SOMMAIRE

Le cadre juridique et technique du démantèlement

- 1.1 Les enjeux du démantèlement
- 1.2 La doctrine de l'ASN en matière de démantèlement
- 1.2.1 Le démantèlement immédiat
- 1.2.2 L'assainissement et l'atteinte de l'état final
- 1.3 L'encadrement du démantèlement
- 1.4 Le financement du démantèlement et de la gestion des déchets radioactifs

La situation des installations nucléaires en démantèlement: enjeux spécifiques

- 2.1 Les réacteurs électronucléaires
- 2.1.1 Les réacteurs électronucléaires à eau sous pression
- 2.1.2 Les réacteurs électronucléaires autres que les réacteurs à eau sous pression
- 2.2 Les installations de recherche
- 2.2.1 Les laboratoires de recherche
- 2.2.2 Les réacteurs de recherche

- 2.3 Les installations de l'amont du « cycle du combustible nucléaire »
- 2.4 Les installations de l'aval du « cycle du combustible nucléaire »
- 2.5 Les installations support (entreposage, traitement des effluents et de déchets radioactifs)

Les actions de l'ASN dans le champ des installations en démantèlement: une approche graduée

- 3.1 L'approche graduée en fonction des enjeux des installations
- 3.2 Les réexamens périodiques des installations en démantèlement
- 3.3 Le financement du démantèlement: avis de l'ASN sur les rapports triennaux

L'évaluation des stratégies de démantèlement des exploitants

- 4.1 L'évaluation de la stratégie d'EDF
- 4.3 L'évaluation de la stratégie du CEA
- 4.2 L'évaluation de la stratégie d'Orano

Annexe: liste des installations nucléaires de base en cours de démantèlement ou déclassées au 31 décembre 2023

14

Le démantèlement des installations nucléaires de base

Le terme de démantèlement couvre l'ensemble des activités, techniques et administratives, réalisées après l'arrêt définitif d'une installation nucléaire, à l'issue desquelles l'installation peut être déclassée, c'est-à-dire qu'elle peut être retirée de la <u>liste des installations</u> nucléaires de base (INB). Ces activités comprennent l'évacuation des matières radioactives et des déchets encore présents dans l'installation et les opérations de démontage des matériels, composants et équipements utilisés pendant le fonctionnement, ainsi que l'assainissement des locaux et des sols puis, éventuellement, des opérations de démolition de structures de génie civil.

Les opérations de démantèlement et d'assainissement visent à atteindre un état final prédéfini qui permet de prévenir les risques et les impacts que peut présenter le site pour l'environnement et les personnes, en tenant compte de ses usages futurs possibles. Le démantèlement d'une installation nucléaire est prescrit par décret, pris après avis de l'Autorité de sûreté nucléaire (ASN). Cette phase de vie des installations est caractérisée par une succession d'opérations qui présentent une complexité parfois forte, des durées longues, la production de grandes quantités de déchets et des coûts importants; celles-ci doivent être anticipées au mieux - ce d'autant qu'elles doivent être effectuées dans les meilleurs délais possibles, comme prévu par la réglementation. Au fil des chantiers de démantèlement, les changements continus que connaissent les installations modifient la nature des risques et constituent des défis pour les exploitants en matière de gestion de projet.

En 2023, 36 installations nucléaires de tout type (réacteurs de production d'électricité ou de recherche, laboratoires, usines de retraitement de combustible, installations de traitement de déchets, etc.) étaient arrêtées ou en cours de démantèlement en France, ce qui correspond à plus du quart des INB en exploitation.

Le cadre juridique et technique du démantèlement

LES ENJEUX DU DÉMANTÈLEMENT

La réalisation, dans des délais maîtrisés, des opérations de démantèlement, souvent longues et coûteuses, constitue un défi pour les exploitants en matière de gestion de projet, de maintien des compétences ainsi que de coordination des différents travaux, qui font intervenir de nombreuses entreprises spécialisées. Pour autant, le choix du démantèlement immédiat en France impose aux exploitants de réaliser leurs opérations de démantèlement dans des délais aussi courts que possible, dans des conditions économiques acceptables (voir point 1.2).

Le démantèlement est caractérisé par une succession d'opérations qui tendent, progressivement, à diminuer la quantité de substances radioactives présentes dans l'installation, et donc par des risques évolutifs. Si la baisse des quantités de substances présentes dans l'installation réduit tendanciellement les risques, les travaux réalisés, parfois au plus près des substances radioactives, présentent toutefois des enjeux de radioprotection importants pour les travailleurs. D'autres risques augmentent également lors des chantiers, comme le risque de dissémination de substances radioactives dans l'environnement ou certains risques classiques, comme les risques de chutes de charges liées aux manutentions de gros composants, ou les risques d'incendies lors de travaux par points chauds avec présence de matériaux combustibles, d'instabilité de structures partiellement démontées, ou encore de risques chimiques durant les opérations de décontamination.

L'un des enjeux majeurs du démantèlement d'une installation est lié à la production d'un grand volume de déchets, généralement très supérieur aux volumes produits durant son fonctionnement.

Les démantèlements des installations anciennes du Commissariat à l'énergie atomique et aux énergies alternatives (CEA) et des usines de première génération d'Orano (en particulier les usines qui ont concouru à la politique de dissuasion de la France, comme les usines de diffusion gazeuse de l'installation nucléaire de base secrète (INBS - périmètre défense) de Pierrelatte au <u>Tricastin</u> et l'usine UP1 de l'INBS de Marcoule, vont ainsi conduire à une production très importante de déchets de très faible activité (TFA). Il est nécessaire d'apprécier l'ampleur et la difficulté des travaux dès que possible dans la vie des installations, et dès la conception pour les installations neuves, afin d'assurer que leur démantèlement pourra se faire en toute sûreté et dans des délais aussi courts que possible.

Le bon déroulement des opérations de démantèlement est également conditionné par la disponibilité des installations support au démantèlement (installations d'entreposage, de traitement et de conditionnement des déchets, installations de traitement d'effluents) et de filières de gestion adaptées à l'ensemble des déchets susceptibles d'être produits. Lorsque les exutoires finaux sont susceptibles de ne pas être disponibles au moment de la production des déchets issus du démantèlement, les exploitants, de façon prudente, doivent mettre en place les installations nécessaires à l'entreposage sûr de ces déchets, dans l'attente de l'ouverture de la filière de stockage correspondante. L'adéquation des capacités d'entreposage disponibles avec les besoins liés au fonctionnement et au démantèlement des INB, ainsi que l'avancement des études relatives aux différentes options de gestion définitive des déchets radioactifs, sont à cet égard régulièrement examinés dans le cadre du Plan national de gestion des matières et des déchets radioactifs (PNGMDR – voir chapitre 15).

L'ASN considère que la gestion des déchets issus des opérations de démantèlement constitue un point crucial pour le bon déroulement des programmes de démantèlement (disponibilité des filières, gestion des flux de déchets). Ce sujet fait l'objet d'une attention particulière lors de l'évaluation des stratégies de démantèlement et de gestion des déchets établies par le CEA, EDF et Orano (voir point 4 et Les cahiers de l'ASN n°04).

LA DOCTRINE DE L'ASN EN MATIÈRE DE DÉMANTÈLEMENT

De nombreux facteurs peuvent entrer en compte dans le choix d'une stratégie de démantèlement plutôt qu'une autre: la réglementation nationale, les facteurs socio-économiques, le financement des opérations, la disponibilité de filières d'élimination de déchets, de techniques de démantèlement et de personnel qualifié, la connaissance de l'historique d'exploitation, l'exposition du personnel et du public aux rayonnements ionisants induits par les opérations de démantèlement, etc.

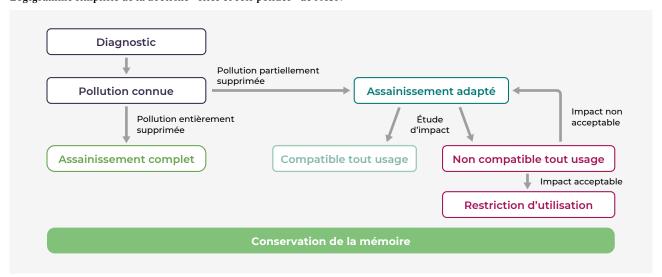
1.2.1 Le démantèlement immédiat

Le principe de démantèlement «dans des délais aussi courts que possible dans des conditions économiques acceptables » figure dans la réglementation applicable aux INB (arrêté du 7 février 2012 fixant les règles générales relatives aux INB). Ce principe, affirmé depuis 2009 par l'ASN en matière de démantèlement et de déclassement des INB, a été inscrit au niveau législatif par la loi n° 2015-992 du 17 août 2015 relative à la transition énergétique pour la croissance verte (loi TECV). Cette approche vise à ne pas faire porter le poids du démantèlement sur les générations futures, sur les plans technique et financier. Elle permet également de bénéficier des connaissances et compétences des équipes présentes pendant le fonctionnement de l'installation, indispensables notamment lors des premières opérations de démantèlement.

La stratégie adoptée en France vise à ce que:

- l'exploitant prépare le démantèlement de son installation dès la conception de celle-ci et actualise cette préparation tout au long de la vie de l'installation;
- l'exploitant anticipe le démantèlement et envoie à l'ASN son dossier de démantèlement avant l'arrêt du fonctionnement de son installation;

- l'exploitant dispose de ressources financières pour assurer le financement du démantèlement, en couvrant les charges qu'il anticipe par des actifs dédiés;
- les opérations de démantèlement se déroulent dans un délai aussi court que possible après l'arrêt de l'installation, délai qui peut néanmoins varier de quelques années à quelques décennies, selon la nature de l'installation et la complexité de son démantèlement.


Le plan de démantèlement, document décrivant les opérations envisagées par l'exploitant pour démanteler son installation, vise à préparer et anticiper au mieux le démantèlement. Ce document est, depuis 2007, demandé dès la mise en service de l'installation, puis mis à jour régulièrement au cours de la vie de l'installation. Il capitalise le retour d'expérience (REX) d'exploitation, en identifiant les éventuels impacts sur les opérations de démantèlement à venir, et doit permettre à l'exploitant de justifier la stratégie de démantèlement retenue, sur la base de critères technico-économiques.

1.2.2 L'assainissement et l'atteinte de l'état final

Les opérations de démantèlement et d'assainissement d'une installation nucléaire doivent conduire à retirer progressivement les substances radioactives ou dangereuses des structures et des sols, en vue du déclassement de l'installation, correspondant à son retrait de la liste des INB. Les substances radioactives peuvent être issues des phénomènes d'activation ou de dépôt engendrés par les activités de l'INB ou les incidents qu'elle a subis. Des substances chimiques dangereuses peuvent également se trouver dans l'installation, du fait de l'utilisation de certains procédés ou équipements (hydrocarbures, acide fluorhydrique, sodium, etc.).

Dans certains cas, les substances radioactives ou dangereuses sont entraînées par migration dans les structures des bâtiments de l'installation, voire dans les sols du site et ses alentours, qui doivent en ce cas faire l'objet d'un assainissement. L'assainissement correspond aux opérations de réduction ou d'élimination de la radioactivité ou de toute autre substance dangereuse restant, aussi bien dans les structures que dans les sols.

Logigramme simplifié de la doctrine «sites et sols pollués» de l'ASN

Phases de vie d'une installation nucléaire de base

FIN DU FONCTIONNEMENT PHASE PRÉPARATOIRE AU DÉMANTÈLEMENT de démantèlement d'arrêt 2 ans maximum Au moins 2 ans avant Au plus tard 2 ans À compter de la date d'arrêt la date envisagée, après la déclaration définitif, l'exploitant n'est plus l'exploitant déclare au d'arrêt, l'exploitant autorisé à faire fonctionner ministre chargé de la doit transmettre au son installation. sûreté nucléaire et à ministre son dossier Il commence à préparer le l'ASN son intention de démantèlement. démantèlement de son installation. d'arrêter définitivement Ce dossier présente Les opérations préparatoires son installation. les opérations de au démantèlement consistent Cette déclaration est démantèlement envisagées souvent à évacuer les substances portée à la connaissance par l'exploitant, ainsi que radioactives et chimiques présentes du public. les dispositions qu'il prend dans l'installation (combustible pour en limiter les impacts usé), aménager les locaux sur les personnes et (aménagement d'aires l'environnement. d'entreposage) ou à adapter les réseaux d'utilité (ventilation, distribution électrique).

L'ASN demande que les exploitants des installations nucléaires mettent en œuvre des pratiques d'assainissement tenant compte des meilleures méthodes et techniques disponibles, dans des conditions économiques acceptables. Le scénario d'assainissement complet doit être envisagé systématiquement en tant que scénario de référence. Ce scénario, qui conduit à une libération inconditionnelle des bâtiments et des sites, permet en effet de garantir, sans aucune réserve, la protection des personnes et de l'environnement dans le temps.

En cas de difficultés techniques, économiques ou financières identifiées, l'exploitant peut soumettre à l'ASN un ou plusieurs scénarios d'assainissement adaptés, compatibles avec les usages futurs du site (établis, envisagés et envisageables). Il doit, en tout état de cause, apporter les éléments justifiant que le scénario de référence ne peut être mis en œuvre dans des conditions technicoéconomiques acceptables et que les opérations d'assainissement envisagées constituent un optimum technico-économique. L'ASN examine alors les scénarios présentés par l'exploitant et s'assure que l'assainissement sera mené aussi loin que raisonnablement possible pour répondre aux objectifs fixés par le décret de démantèlement. Dès lors que l'assainissement réalisé ne permet pas une libération inconditionnelle du site, l'ASN peut conditionner le déclassement administratif de l'installation à la mise en place d'une servitude d'utilité publique, limitant le droit de propriété et d'usage du sol, instituée par l'autorité publique à la demande de l'exploitant (voir logigramme page précédente).

Dans tous les cas, la réglementation prévoit que la stratégie d'assainissement, mise en œuvre par l'exploitant, doit conduire à un état final de l'INB et de son site compatible avec un déclassement administratif (voir point 1.3).

Conformément aux principes généraux de radioprotection, l'impact dosimétrique du site sur les travailleurs et le public après déclassement doit être aussi faible que raisonnablement possible (principe ALARA(1)). L'ASN n'est pas favorable à l'introduction de seuils généralisés et considère qu'il est préférable d'adopter une démarche d'optimisation, reposant sur des critères technicoéconomiques, en fonction des usages futurs du site (établis, envisagés et envisageables). Néanmoins, dans tous les cas, une fois le site déclassé, l'exposition radiologique induite ne doit pas excéder la valeur réglementaire de 1 millisievert (mSv) sur une année pour l'ensemble des scénarios d'usage, prescrite dans le code de la santé publique.

^{1.} Principe ALARA (As Low As Reasonably Achievable - au plus faible niveau que l'on peut raisonnablement atteindre).

DÉMANTÈLEMENT DÉCLASSEMENT de démantèlement de démantèlement de déclassement À partir du dossier Le démantèlement Le déclassement consiste à retirer de démantèlement concerne l'ensemble une installation de la liste des INB, déposé par l'exploitant, des opérations techniques ce qui suppose que l'installation n'est le ministre prescrit par réalisées en vue d'atteindre plus, dès lors, soumise au régime décret les opérations de un état final permettant juridique et administratif des INB. démantèlement qui seront le déclassement Le déclassement a lieu après la fin réalisées sur l'installation, de l'installation. des opérations de démantèlement, ainsi que la durée du Il concerne le sur la base d'un dossier présentant démantèlement. l'état final de l'installation. démantèlement L'ASN peut également, électromécanique En tant que de besoin, des restrictions et l'assainissement par décision, prendre des d'usage peuvent être instaurées si prescriptions techniques des sols et des structures. certaines pollutions n'ont pas pu visant à encadrer davantage être retirées. le démantèlement. La mission de l'ASN

La doctrine que l'ASN met en œuvre est précisée dans les guides (disponibles sur asn.fr) relatifs aux opérations d'assainissement des structures (Guide n°14) et à la gestion des sols pollués dans les installations nucléaires (Guide n°24). Les dispositions de ces guides ont déjà été mises en œuvre dans de nombreuses installations, présentant des caractéristiques variées: réacteurs de recherche, laboratoires, usines de fabrication de combustible, etc.

L'ENCADREMENT DU DÉMANTÈLEMENT

Dès lors qu'une INB est définitivement arrêtée, elle doit être démantelée. Elle change donc de finalité par rapport à ce pour quoi sa création a été autorisée, le décret d'autorisation de création (DAC) spécifiant les conditions de fonctionnement de l'installation. Par ailleurs, les opérations de démantèlement impliquent une évolution des risques présentés par l'installation. En conséquence, ces opérations ne peuvent être réalisées dans le cadre fixé par le DAC. Le démantèlement d'une installation nucléaire est donc prescrit par un nouveau décret, pris après avis de l'ASN. Ce décret fixe, entre autres, les principales étapes du démantèlement, la date de fin prévue du démantèlement et l'état final à atteindre. Dans le cadre de ses missions de contrôle, l'ASN vérifie la bonne mise en œuvre des opérations de démantèlement telles que prescrites par le décret de démantèlement.

Afin d'éviter le fractionnement des projets de démantèlement et d'améliorer leur cohérence d'ensemble, le dossier de démantèlement doit décrire explicitement l'ensemble des travaux envisagés, depuis l'arrêt définitif jusqu'à l'atteinte de l'état final visé, et expliciter, pour chaque étape, la nature et l'ampleur des risques présentés par l'installation ainsi que les moyens mis en œuvre pour les maîtriser. L'exploitant doit justifier, dans son dossier de démantèlement, que les opérations de démantèlement seront réalisées dans un délai aussi court que possible. Ce dossier fait l'objet d'une enquête publique, au cours de laquelle les riverains, les collectivités locales et la commission locale d'information (CLI) sont sollicités. Les dossiers de démantèlement présentant les enjeux les plus significatifs sont, par ailleurs, soumis à l'examen du Groupe permanent d'experts pour le démantèlement (GPDEM), mis en place en 2018.

Compte tenu du fait que les opérations de démantèlement des installations complexes sont souvent très longues, le décret prescrivant le démantèlement peut prévoir qu'un certain nombre d'étapes feront l'objet, le moment venu, d'un accord préalable de l'ASN, sur la base de dossiers de sûreté spécifiques.

Le schéma «Phases de vie d'une INB» ci-dessus décrit la procédure réglementaire associée.

La phase de démantèlement peut être précédée d'une étape de préparation au démantèlement, réalisée sous le couvert de l'autorisation d'exploitation initiale. Cette phase préparatoire permet par exemple d'évacuer une partie des substances radioactives et chimiques (dont le combustible d'un réacteur nucléaire), ainsi que de préparer des opérations de démantèlement (aménagement de locaux, préparation de chantiers, formation des équipes, etc.). C'est également lors de cette phase préparatoire que peuvent être réalisées les opérations de caractérisation de l'installation (cartographies radiologiques, analyse de l'historique de l'exploitation) indispensables pour établir les scénarios d'assainissement visés.

Le code de l'environnement prévoit que la sûreté d'une installation en phase de démantèlement, comme celle de toutes les autres INB, soit réexaminée périodiquement, au moins tous les dix ans. L'objectif de l'ASN est de s'assurer, par ces réexamens périodiques, que l'installation respecte les dispositions de son décret de démantèlement et les exigences de sûreté et de radioprotection associées jusqu'à son déclassement, en appliquant les principes de la défense en profondeur propres à la sûreté nucléaire, dans une logique proportionnée aux enjeux.

En effet, si les opérations de démantèlement entraînent l'affaiblissement, voire la disparition des barrières physiques existantes, l'exploitant doit, en fonction des enjeux de sûreté et de radioprotection résiduels, maintenir des lignes de défense adaptées nécessaires à la protection des travailleurs et de l'environnement (mise en place de sas, ventilation nucléaire, balises de radioprotection, etc.).

À l'issue de son démantèlement, une INB doit être déclassée, sur décision de l'ASN homologuée par le ministre chargé de la sûreté nucléaire. Elle est alors retirée de la liste des INB et ne relève plus du régime correspondant. Une vingtaine d'installations, majoritairement d'anciens réacteurs de recherche, ont à ce jour été démantelées et déclassées.

Au 31 décembre 2023, l'ASN instruit 23 dossiers de démantèlement d'installations définitivement arrêtées, dont le démantèlement n'a pas été encore prescrit ou dont les conditions de démantèlement sont substantiellement modifiées.

LE FINANCEMENT DU DÉMANTÈLEMENT ET DE LA GESTION DES DÉCHETS RADIOACTIFS

Le code de l'environnement, dans ses articles L. 594-1 à L. 594-10 et D. 594-1 à D. 594-18, définit le dispositif relatif à la sécurisation des charges nucléaires liées au démantèlement des installations nucléaires, à la gestion des combustibles usés et à la gestion des déchets radioactifs. Ce dispositif est précisé par l'arrêté du 21 mars 2007 relatif à la sécurisation du financement des charges nucléaires.

Cet arrêté vise à sécuriser le financement des charges nucléaires, dans la logique du principe «pollueur-payeur». Les exploitants nucléaires doivent ainsi prendre en charge ce financement, par la constitution d'un portefeuille d'actifs dédiés, à hauteur des charges anticipées.

Ces charges doivent être évaluées de manière prudente, en prenant en compte les différentes incertitudes. Les exploitants sont ainsi tenus de remettre au Gouvernement des rapports triennaux relatifs à ces charges et des notes d'actualisation annuelles.

Le provisionnement se fait sous le contrôle direct de l'État, qui analyse la situation des exploitants et peut prescrire les mesures nécessaires en cas d'insuffisance ou d'inadéquation. La Direction générale du Trésor et la Direction générale de l'énergie et du climat (DGEC) constituent l'autorité administrative compétente pour ce contrôle.

La DGEC saisit l'ASN afin de rendre un avis technique sur les hypothèses prises par les exploitants.

Dans tous les cas, ce sont les exploitants nucléaires qui restent responsables du bon financement de leurs charges de long terme.

$\mathbf{2}_{\perp}$ La situation des installations nucléaires en démantèlement: enjeux spécifiques

À la fin de l'année 2023, 36 installations sont définitivement arrêtées ou en cours de démantèlement en France, soit environ un quart des INB (voir carte page 356). Ces installations sont très variées (réacteurs électronucléaires, réacteurs de recherche, installations du «cycle du combustible», installations support, etc.) et les enjeux du démantèlement diffèrent d'une installation à l'autre. Ces enjeux sont cependant tous liés à la quantité importante de déchets à gérer pendant le démantèlement et aux conditions d'intervention au plus près de zones contaminées ou activées. Les enjeux de sûreté et de radioprotection sont d'autant plus élevés que les installations contiennent des déchets historiques; c'est le cas, en particulier, des anciennes usines de traitement de combustibles irradiés d'Orano ou des anciennes installations d'entreposage du CEA. L'une des problématiques majeures du démantèlement est la mémoire de la conception et de l'exploitation de l'installation. Ainsi, le maintien de compétences et la phase de caractérisation de l'installation visant à définir son état initial (état de l'installation au début du démantèlement) présentent une importance cruciale.

LES RÉACTEURS ÉLECTRONUCLÉAIRES

2.1.1 Les réacteurs électronucléaires à eau sous pression

Le démantèlement des réacteurs électronucléaires à eau sous pression (REP) bénéficie d'un REX acquis sur de nombreux projets à l'international, et la conception de ces réacteurs facilite leur démantèlement par rapport à d'autres technologies de réacteur. Le démantèlement de ce type d'installation ne présente ainsi pas d'enjeu technique majeur et sa faisabilité est acquise. Toutefois, quelle que soit la durée de vie des réacteurs en fonctionnement, EDF sera confrontée au démantèlement simultané de plusieurs REP. EDF devra donc s'organiser pour industrialiser le démantèlement afin de respecter l'obligation de démantèlement de chaque installation dans un délai aussi court que possible.

Le premier chantier de démantèlement des REP en France est celui du réacteur Chooz A (INB 163). Il s'agit d'un modèle réduit par rapport aux réacteurs électronucléaires en fonctionnement. Il présente quelques difficultés techniques particulières liées à sa construction dans une caverne; certaines opérations sont plus complexes, telle l'extraction de gros composants comme les générateurs de vapeur. Le démantèlement de la cuve de Chooz A est en cours depuis 2014 et se poursuit dans des conditions satisfaisantes.

La centrale nucléaire de Fessenheim a été arrêtée définitivement en 2020. Il s'agira des deux premiers réacteurs de 900 mégawatts électriques (MWe), représentatifs du parc actuel de réacteurs exploités par EDF, à être démantelés en France. Le démantèlement des réacteurs de Fessenheim constituera donc également un REX important pour les autres REP d'EDF (voir « Panorama régional » en introduction de ce rapport).

2.1.2 Les réacteurs électronucléaires autres que les réacteurs à eau sous pression

Les réacteurs électronucléaires autres que les REP correspondent tous à des prototypes industriels. Ce sont les réacteurs de première génération de type uranium naturel-graphite-gaz (UNGG), ainsi que le réacteur à eau lourde EL4-D sur le site de Brennilis, et les réacteurs à neutrons rapides refroidis au sodium, Phénix et Superphénix. Le démantèlement de ces réacteurs est caractérisé par l'absence de REX en France et à l'international, et par le fait qu'au moment de leur conception la perspective de leur démantèlement futur n'était pas aussi structurante qu'elle a pu l'être pour les réacteurs de série plus récents. Compte tenu de leur caractère unique, il est donc nécessaire de concevoir et réaliser des opérations spécifiques et complexes pour les démanteler. En outre, certains de ces réacteurs sont arrêtés depuis plusieurs décennies, ce qui a conduit à une perte de connaissance de l'installation et de son exploitation, ainsi que des compétences associées.

Comme pour les REP, le démantèlement commence par le retrait du combustible nucléaire, qui permet de retirer 99% de la radioactivité présente dans l'installation. Les puissances thermiques de ces réacteurs étant assez élevées (toutes supérieures à 250 mégawatts thermiques - MWth), leur démantèlement nécessite la mise en œuvre de moyens téléopérés dans certaines zones restées fortement irradiantes, en particulier au voisinage du cœur du réacteur.

Les réacteurs UNGG ont la particularité d'être des réacteurs de grandes dimensions et très massifs, nécessitant notamment des techniques de découpe et d'accès innovantes, dans des conditions d'irradiation élevées. Le démantèlement de ces réacteurs conduira EDF à gérer des volumes de déchets significatifs. L'exutoire final de certains de ces déchets est en cours de définition, comme les briques de graphite, représentant environ 15000 tonnes de déchets qui seront produits, pour lesquelles un stockage adapté aux déchets nucléaires de faible activité à vie longue (FA-VL) est envisagé.

Le démantèlement du réacteur prototype à eau lourde (EL4-D), situé sur le site de Brennilis, a été ralenti, d'une part en raison de l'absence de REX concernant les techniques de démantèlement à mettre en œuvre; d'autre part en raison de difficultés concernant l'installation de conditionnement et d'entreposage de déchets activés (Iceda - voir « Panorama régional » en introduction de ce rapport) qui doit prendre en charge certains des déchets de ce démantèlement. Iceda étant désormais en service et le scénario de démantèlement du bâtiment réacteur établi, le démantèlement de l'installation reprendra en 2024, pour réaliser un démantèlement complet de l'installation d'ici fin 2041, encadré par le décret n°2023-898 du 26 septembre 2023.

Le démantèlement des réacteurs refroidis au sodium (Phénix et Superphénix) n'est confronté à aucun obstacle technologique majeur. Les enjeux spécifiques résident principalement dans la maîtrise du risque d'incendie lié à la présence de sodium et à la sûreté de ses procédés de traitement.

LES INSTALLATIONS DE RECHERCHE

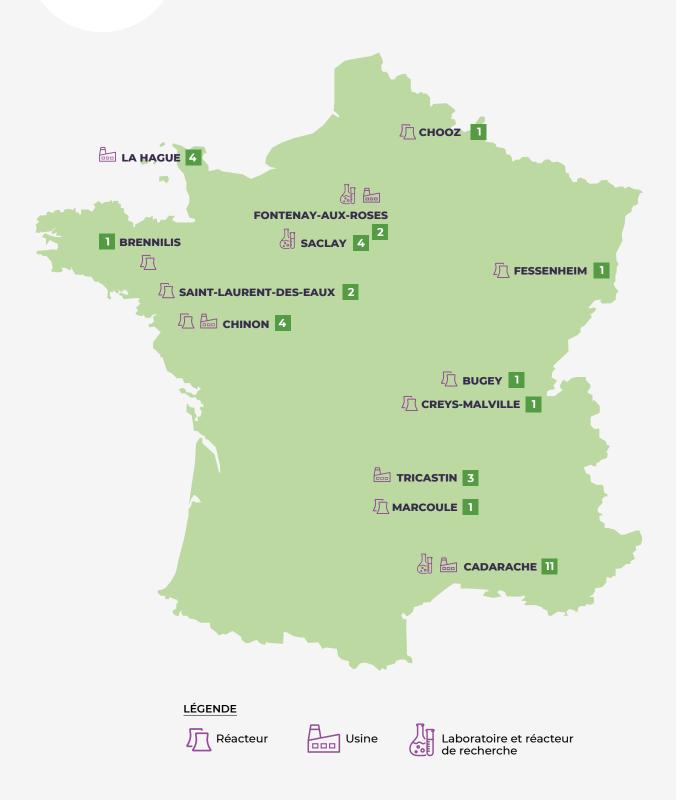
2.2.1 Les laboratoires de recherche

Quatre laboratoires de recherche sont en cours de démantèlement ou en préparation au démantèlement. Il s'agit du laboratoire de haute activité (LHA) de Saclay (INB 49), du laboratoire de purification chimique (LPC) de Cadarache (INB 54), de l'atelier des matériaux irradiés (AMI) de Chinon (INB 94) et du laboratoire dénommé «Procédé» de Fontenay-aux-Roses (INB 165).

Ces laboratoires ont démarré leur activité dans les années 1960; ils étaient dédiés à la recherche réalisée en soutien au développement de la filière électronucléaire en France.

Ces installations très anciennes sont toutes confrontées à la problématique de gestion des déchets dits «historiques», entreposés sur place à une époque où les filières de gestion n'avaient pas été mises en place: déchets nucléaires de moyenne activité à vie longue (MA-VL), déchets sans filière de gestion (par exemple, des huiles et liquides organiques non incinérables, ou des déchets contenant des composés du mercure potentiellement hydrosolubles). Par ailleurs, des incidents ont eu lieu lors de leur exploitation, contribuant à l'émission de substances radioactives à l'intérieur et à l'extérieur des enceintes de confinement et à des pollutions plus ou moins importantes des structures et des sols, ce qui rend les démantèlements et assainissements nécessaires plus complexes et plus longs. Une des étapes les plus importantes - et parfois difficile du fait d'archives incomplètes du démantèlement de ce type d'installation consiste donc à établir le plus précisément possible l'inventaire des déchets et l'état radiologique de l'installation, pour pouvoir définir les étapes du démantèlement et les filières de gestion des déchets.

2.2.2 Les réacteurs de recherche


À la fin de l'année 2023, huit réacteurs expérimentaux sont définitivement arrêtés: Rapsodie (réacteur à neutrons rapides refroidi au sodium), Masurca, Éole et Minerve (maquettes critiques), Phébus (réacteur d'essai), Osiris et Orphée (réacteurs de type «piscine») et <u>Isis</u> (réacteur d'enseignement). Le réacteur d'enseignement <u>Ulysse</u> a quant à lui été déclassé en 2022. Ces réacteurs sont caractérisés par une puissance plus faible (de 100 watts thermiques à 70 MWth) que les réacteurs électronucléaires. Leur démantèlement n'avait pas été anticipé au moment de leur conception, dans les années 1960 à 1980.

Lors du démantèlement, ces installations présentent généralement un faible terme source radiologique, puisque l'une des premières opérations après l'arrêt définitif consiste à évacuer le combustible usé. L'un des principaux enjeux réside dans la production de volumes importants de déchets TFA et dans leur gestion, afin d'assurer leur entreposage puis leur élimination par une filière appropriée.

Les réacteurs de recherche bénéficient d'un REX significatif, lié au démantèlement de nombreuses installations similaires en France (Siloé, Siloette, Mélusine, Harmonie, Triton(2), le réacteur universitaire de Strasbourg - RUS, Ulysse) et à l'international. Leur démantèlement se fait habituellement sur des durées de l'ordre de la dizaine d'années, mais la multiplicité d'installations à démanteler simultanément peut conduire à envisager des durées de démantèlement significativement plus longues pour certains réacteurs du CEA. Après l'assainissement des zones activées ou contaminées, conduisant à l'évacuation de l'ensemble des déchets radioactifs vers des filières adaptées, la majorité de ces réacteurs ont été démolis avec envoi des déchets en filière conventionnelle.

^{2.} Triton fut l'un des premiers réacteurs de recherche très compacts et très souples, de type piscine, dénommés «MTR» (Material Test Reactor). Triton (6,5 MWth) fut implanté en 1959 à Fontenay-aux-Roses.

36 INSTALLATIONS NUCLÉAIRES DÉFINITIVEMENT ARRÊTÉES OU EN COURS DE DÉMANTÈLEMENT **AU 31 DÉCEMBRE 2023**

INB 71 · Phénix Mise en service: 1973 En démantèlement

En démantèlement

Observatoire des projets de reprise et de conditionnement des déchets et de démantèlement

Compte tenu du grand nombre de leurs installations à l'arrêt définitif ou en cours de démantèlement, le CEA, Orano et EDF doivent mener, en parallèle, différents projets de reprise et de conditionnement des déchets (RCD) et de démantèlement.

Certains de ces projets présentent, du fait d'un inventaire radiologique important ou de leur caractère inédit, des difficultés particulières. En effet, leur avancement nécessite parfois de concevoir des procédés spécifiques, qui reposent sur des technologies qui ne sont pas encore éprouvées, ou la mise en place de filières de gestion de déchets radioactifs pour lesquels il n'existe pas encore de solution de stockage définitif.

Un effort spécifique d'identification de jalons à court et à moyen termes participe de la bonne conduite de ces projets.

L'importance de ces projets, et les difficultés particulières qu'ils peuvent présenter, ont conduit le CEA et Orano à prioriser ceux qui présentent les enjeux les plus importants, dans une stratégie validée par l'ASN, et à définir les premières étapes nécessaires à leur avancement, sous le contrôle de l'ASN, même lorsque leur terme est très éloigné dans le temps.

Le tableau ci-après vise à présenter de manière synthétique, pour les principaux projets de RCD et de démantèlement, les prochaines échéances associées et les difficultés rencontrées dans leur mise en œuvre.

CEA Cadarache

OPÉRATION ET DESCRIPTION EN1FU PROCHAINES ÉTAPES CLÉS ORSERVATIONS DE L'ASN Démantèlement de Sûreté de la piscine · Reprise et conditionnement L'ASN a autorisé en 2022 le procédé des combustibles araldités de «désentreposage des combustibles l'installation Pégase d'entreposage 22 vis-à-vis d'un aléa l'installation Pégase (prévus araldités de Pégase » (DECAP) sismique à partir de 2025 (*)). permettant le reconditionnement des étuis de combustibles araldités pour leur Découplage des installations Limitation de entreposage dans l'installation Cascad. Pégase et Cascad (envisagé la dépendance de de 2030 à 2035). Cascad en matière L'INB 22 est composée de deux installations: l'installation Pégase en de servitudes d'utilité démantèlement, l'installation Cascad publique en fonctionnement. La fin du démantèlement est prévue en 2065 (*). Reprise et Sûreté des fosses · Construction d'un nouveau Le dossier de démantèlement de conditionnement de contenant des bâtiment et mise en service l'installation est en cours d'instruction; 37B déchets vis-à-vis celui-ci présente des objectifs de délai l'ensemble des résidus d'un procédé de reprise présents dans les cuves d'un aléa sismique entièrement automatisé très éloignés, au-delà de 2100, pour la fin du démantèlement; ceux-ci seront nécessitant d'importantes de l'installation et d'un incendie opérations préalables examinés avec une vigilance particulière. (prévues en 2052). · Définition du procédé de conditionnement définitif.

^{*} Échéance telle que présentée dans le dernier dossier soumis à enquête publique, ou échéance prescrite par l'ASN.

CEA Cadarache

	OPÉRATION ET DESCRIPTION	ENJEU	PROCHAINES ÉTAPES CLÉS	OBSERVATIONS DE L'ASN
54	Démantèlement de l'installation cryotraitement en vue de l'assainissement final des structures et des sols	Sûreté des opérations vis-à-vis du risque de dissémination de matières radioactives	Démantèlement des caissons procédés du cryotraitement. Caractérisations des terres situées sous l'installation.	L'ASN instruit actuellement une demande de modification du décret autorisant le démantèlement de l'INB 54. L'opération de démantèlement de l'installation de cryotraitement est prioritaire dans la stratégie « DEM/déchets » du CEA. Elle a débuté en 2021. La fin du démantèlement est prévue en 2024 ⁽¹⁾ .
56	Reprise et conditionnement des déchets entreposés dans des tranchées	Risque d'inondation par remontée de nappes	 Développement des filières de conditionnement pour certains déchets particuliers. Conception des moyens de reprise automatisés. 	Le scénario de reprise des déchets présents dans les tranchées sera transmis à l'ASN début 2024.
	Reprise et conditionnement de l'ensemble des déchets en vrac moyennement irradiants présents dans des fosses anciennes (projet «vrac MI»)	Sûreté des fosses contenant des déchets vis-à-vis d'un aléa sismique • Construction de nouveaux bâtiments et mise en service de procédés de reprise entièrement automatisés nécessitant d'importantes opérations préalables.		L'instruction par l'ASN du dossier de démantèlement est en cours. Le niveau de maturité du projet «vrac MI» est celui d'un avant-projet détaillé.
	Reprise et conditionnement de l'ensemble des déchets présents sous les hangars (projet «ATC»)	Sûreté des hangars contenant des déchets vis-à-vis d'un aléa sismique	Définition des procédés de conditionnement définitif.	Le niveau de maturité du projet «ATC» est celui d'un avant-projet sommaire.

 $^{{\}rm *\acute{e}}$ Échéance telle que présentée dans le dernier dossier soumis à enquête publique, ou échéance prescrite par l'ASN.

CEA Fontenay-aux-Roses

	OPÉRATION ET DESCRIPTION	ENJEU	PROCHAINES ÉTAPES CLÉS	OBSERVATIONS DE L'ASN
165	Conditionnement des déchets MA-VL en fûts PETRUS et caractérisation des déchets issus du démantèlement de l'ensemble PETRUS	Accès aux terres contaminées sous l'ensemble PETRUS	Construction de la nouvelle enceinte de transfert et de conditionnement des déchets (ETCB). Réalisation d'aménagements pour prendre en charge et évacuer les fûts de déchets issus du démantèlement des équipements du bâtiment 18 (EDB).	L'ASN instruit actuellement une demande de modification des décrets autorisant le démantèlement des INB 165 et 166, dont certaines échéances sont déjà dépassées. Compte tenu de nombreuses difficultés techniques et organisationnelles, notamment la connaissance de l'état initial des cellules blindées contenant des déchets anciens, l'échéance de fin
166	Reprise des déchets entreposés dans les puits du bâtiment 58 de l'INB 166	Reprise des déchets pour permettre le démantèlement des installations situées dans une zone fortement urbanisée	Construction du nouvel équipement de mesure et de conditionnement (EMC).	de reprise sera probablement reportée de plusieurs décennies. La fin du démantèlement était prévue en 2017 ⁽¹⁾ et 2018 ⁽¹⁾ respectivement pour les INB 165 et 166.

^{*} Échéance telle que présentée dans le dernier dossier soumis à enquête publique, ou échéance prescrite par l'ASN.

CEA Marcoule

	OPÉRATION ET DESCRIPTION	ENJEU	PROCHAINES ÉTAPES CLÉS	OBSERVATIONS DE L'ASN
71	Traitement du sodium	Risque incendie, pyrophoricité, explosion	 Mise en service de l'installation de traitement du sodium Noah (prévue en 2037 °). Évacuation du combustible (prévue à partir de 2025 °). 	Le traitement du sodium est un préalable au démantèlement de l'installation et permettra de diminuer significativement les risques présentés par celle-ci. La fin de l'évacuation du combustible sera reportée de quelques années.

 $^{{\}rm *\acute{e}}$ Échéance telle que présentée dans le dernier dossier soumis à enquête publique, ou échéance prescrite par l'ASN.

CEA Saclay

	OPÉRATION ET DESCRIPTION	ENJEU	PROCHAINES ÉTAPES CLÉS	OBSERVATIONS DE L'ASN
1NB 35	Vidange des cuves MA3 à MA8 du local 98		Investigations sur l'état physique des cuves et de leur rétention (fin prévue en 2026).	Les investigations doivent également permettre la caractérisation des effluents contenus dans les cuves; le processus de conditionnement devra quant à lui être fiabilisé.
		Sûreté des opérations vis-à-vis du risque		L'ensemble de ces opérations sera encadré par une prescription de l'ASN.
	Assainissement de la fosse 99	de dissémination de matières radioactives	Vidange des fonds de cuves présentes dans la fosse.	L'ASN a autorisé en octobre 2022 les opérations de vidange de la cuve 40/4, jugée prioritaire.
	Traitement des boues des cuves MA501 à MA507		Caractérisation des effluents et stratégie d'assainissement à consolider.	L'ASN considère la cuve MA507 comme prioritaire.
11.15				
72	Reprise et conditionnement de fûts contenant un mélange de déchets et de morceaux de combustibles		 Construction des équipements de reprise (prévue en 2029). Adaptation des équipements de reprise quel que soit l'état envisagé des déchets. 	La mise en service des équipements de reprise était initialement prévue en 2023. Cette échéance a été reportée en 2029 en raison de nombreuses difficultés techniques et organisationnelles.
			 Mise en service des équipements de reprise (prévue en 2029). 	Cette échéance de mise en service nécessite d'être consolidée en raison de la nécessité de reprendre les études déjà réalisées.
		Sûreté des entreposages vis-à-vis		La fin du démantèlement est prévue en 2059 ⁽¹⁾ .
	Reprise et conditionnement de l'ensemble	du confinement et d'un aléa sismique	Désentreposage et vidange de la piscine (fin prévue en 2024 (°)).	Les opérations d'évacuation
	des déchets solides, des combustibles, des combustibles irradiés et des sources radioactives		Zone des 40 puits – Désentreposage des déchets irradiants (fin prévue en 2030 (°)).	sont en cours. Compte tenu de nombreuses difficultés techniques et organisationnelles, les échéances initiales ont été reportées de plusieurs années.
			Désentreposage des sources du bâtiment 116. (fin prévue en 2025 ⁽⁷⁾).	Les opérations de désentreposage des massifs 108 et 116 ont été achevées en 2022.

 $^{{\}rm *\acute{e}}$ Échéance telle que présentée dans le dernier dossier soumis à enquête publique, ou échéance prescrite par l'ASN.

	OPÉRATION ET DESCRIPTION	ENJEU	PROCHAINES ÉTAPES CLÉS	OBSERVATIONS DE L'ASN
Chinon A2 Z	Démantèlement du caisson du réacteur	Projet «pilote» pour le démantèlement des autres réacteurs UNGG	 Ouverture du caisson et mise en place de la plateforme de démantèlement. Démantèlement de l'empilement graphite. 	L'évacuation du combustible de l'installation a permis d'en diminuer significativement les risques. L'installation a en outre été déjà partiellement démantelée. L'ASN se positionnera sur les délais présentés par EDF pour le démantèlement de ses réacteurs UNGC dans le cadre de l'instruction des dossiers de démantèlement remis fin 2022.
1NB 74	Reprise et conditionnement des chemises de graphite	Construction d'un nouvel entreposage répondant aux normes de sûreté actuelles	Construction du nouveau bâtiment d'entreposage et des équipements de reprise et de conditionnement.	L'ASN se positionnera sur la sûreté du projet de nouvel entreposage dans le cadre de l'instruction du dossier de démantèlement remis en 2022.

^{*} Échéance telle que présentée dans le dernier dossier soumis à enquête publique, ou échéance prescrite par l'ASN.

Orano La Hague

	OPÉRATION ET DESCRIPTION	ENJEU	PROCHAINES ÉTAPES CLÉS	OBSERVATIONS DE L'ASN
33	Démantèlement de l'atelier « Haute activité dissolution extraction » (HADE)	Sûreté à court terme vis-à-vis du séisme	Mise en service actif du bâtiment dénommé «déchets de faible granulométrie» (DFG) pour la reprise des déchets du dégainage (prévue en 2028).	La priorité du démantèlement de cette installation est donnée à la reprise au plus vite des déchets historiques, qui présentent un enjeu prépondérant pour
	Démantèlement de l'atelier « Haute activité produit de fission» (HAPF)		Opérations de rinçage et de traitement d'effluents des cuves des solvants de l'atelier HAPF (prévues avant fin 2031).	la sûreté compte tenu de l'inventaire radiologique élevé et des fragilités de leurs conditions actuelles d'entreposage. Les opérations de rinçage et de traitement d'effluents des cuves des solvants de l'atelier HAPF pourraient
	Démantèlement de l'atelier «Moyenne activité plutonium » (MAPu)	Sûreté à court terme vis-à-vis du séisme des ateliers environnants	Déconstruction des étages supérieurs pour limiter les risques d'agression vis-à-vis des ateliers en fonctionnement (prévue avant fin 2028).	être décalées jusque vers 2035 en cas de difficulté technique. La fin du démantèlement est prévue en 2046 ⁽¹⁾ .

^{*} Échéance telle que présentée dans le dernier dossier soumis à enquête publique, ou échéance prescrite par l'ASN.

Orano La Hague

	OPÉRATION ET DESCRIPTION	ENJEU	PROCHAINES ÉTAPES CLÉS	OBSERVATIONS DE L'ASN
1NB 38	Reprise et conditionnement des déchets du silo 130	Sûreté à court terme du silo vis-à-vis du confinement et d'un aléa sismique Conditionnement dans des délais compatibles avec la mise en service de l'installation Cigéo de stockage en couche géologique profonde	Fin de reprise des déchets solides UNGG (déchets MA-VL). Fin de reprise des effluents actifs et boues. Fin de conditionnement des déchets MA-VL.	À ce jour, la reprise de l'ensemble des déchets du silo 130 est prévue fin 2025 ⁽¹⁾ . Néanmoins, les échéances de fin de reprise sont reportées de quelques années. En effet, la reprise a débuté en février 2020, mais des dysfonctionnements techniques nécessitent des aménagements en vue d'un passage à une cadence industrielle. Le scénario de reprise des boues et effluents est déterminé. Les études se poursuivent pour permettre la reprise des effluents avec la reprise des déchets solides UNGG MA-VL. Le conditionnement en colis définitif répondant aux critères d'acceptation dans une installation de stockage en couche géologique profonde est reporté de plusieurs décennies ⁽¹⁾ . La fin du démantèlement est prévue en 2043 ⁽¹⁾ .
	Reprise et conditionnement des boues entreposées dans des silos de la STE2 (projet «Reprise et conditionnement des boues» – RCB)	Sûreté des silos vis-à-vis du confinement et d'un aléa sismique	Construction et mise en service d'un nouvel entreposage. Définition de la matrice d'enrobage des boues, développement puis mise en service du procédé de traitement des boues. Définition du procédé de conditionnement définitif.	La nouvelle stratégie de reprise et de gestion des boues a été révisée en 2022 et validée en avril 2023. Orano s'est engagé à construire de nouveaux silos pour garantir les conditions d'entreposage des boues. Le début de la reprise des boues est reporté à l'horizon 2037. Les échéances de début et de fin de reprise sont donc reportées significativement. Le conditionnement en colis définitif acceptable dans une installation de stockage en couche géologique profonde sera reporté de plusieurs décennies (**). La fin du conditionnement des boues des silos est prévue pour fin 2030 (**) (conformément à l'article L. 542-1-3 du code de l'environnement).
80 80	Reprise et conditionnement des déchets du silo HAO et des piscines du stockage organisé des coques (SOC)	Sûreté du silo vis-à-vis du confinement, de l'aléa sismique ou de la tenue à une chute d'avion Conditionnement dans des délais compatibles avec la mise en service de l'installation Cigéo en couche géologique profonde	Mise en service de la cellule de reprise des déchets solides MA-VL et des effluents actifs. Fin du conditionnement des déchets (prévue avant fin 2022 ⁽¹⁾).	Compte tenu de difficultés liées à l'exploitation et à la maintenance du procédé envisagé, le scénario de reprise a été actualisé en 2021. L'ASN instruit les demandes d'autorisation de mise en service actif des équipements. Les premiers essais sont prévus dans les prochaines années. L'échéance de début de reprise est désormais reportée à 2027. L'échéance de fin du conditionnement est reportée significativement.
	Déconstruction partielle du bâtiment filtration en fin de démantèlement	Réduction des interactions avec les piscines de l'atelier de déchargement et d'entreposage des éléments combustibles usés (NPH), en cas de séisme	Déconstruction des étages supérieurs. Assainissement des «cellules 900 ».	La fin de déconstruction du bâtiment filtration est envisagée entre 2031 et 2036, et l'assainissement des «cellules 900 » autour de 2050; ces échéances doivent toutefois encore faire l'objet de dossiers complémentaires attendus dans les prochaines années. L'ASN instruit actuellement une demande de modification du décret autorisant le démantèlement de l'INB 80. La fin du démantèlement est prévue en 2033 (*).

^{*} Échéance telle que présentée dans le dernier dossier soumis à enquête publique, ou échéance prescrite par l'ASN.
** Compte tenu de la complexité des opérations, une modification de l'article L. 542-1-3 du code de l'environnement sera nécessaire.

LES INSTALLATIONS DE L'AMONT DU «CYCLE DU COMBUSTIBLE NUCLÉAIRE»

Deux installations de l'amont du «cycle du combustible» sont en démantèlement. Elles sont situées sur le site du Tricastin, l'une spécialisée dans l'enrichissement de l'uranium par diffusion gazeuse (usine Georges Besse I – INB 93), l'autre dans la conversion de l'uranium (usine ex-Comurhex - INB 105).

Les matières radioactives mises en œuvre lors du fonctionnement de ces usines étaient uniquement des substances uranifères. Une des spécificités de ces installations réside dans la présence de contaminations radioactives liées à la présence d'isotopes de l'uranium, émetteurs de particules «alpha». Les enjeux de radioprotection sont donc en grande partie liés au risque de contamination interne.

Par ailleurs, ces installations sont également des installations anciennes, dont l'historique de fonctionnement est mal connu. La détermination de l'état initial, et en particulier des pollutions présentes dans les sols sous les structures, demeure donc un enjeu important. De plus, les procédés industriels mis en œuvre à l'époque impliquaient l'utilisation de substances chimiques toxiques en quantités importantes (par exemple le trifluorure de chlore ou l'acide fluorhydrique, ainsi que l'uranium lui-même): le confinement de ces substances chimiques représente donc également un enjeu sur ces installations et peut nécessiter la mise en place de moyens dédiés (ventilation, sas de confinement, masques de protection des voies respiratoires, etc.).

LES INSTALLATIONS DE L'AVAL DU «CYCLE DU COMBUSTIBLE NUCLÉAIRE»

Les installations civiles de l'aval du «cycle du combustible» sont constituées des piscines d'entreposage des combustibles usés, des usines de traitement des combustibles usés et des entreposages des déchets du procédé de traitement. Ces installations, exploitées par Orano, sont situées sur le site de La Hague.

La première installation de traitement de La Hague a été mise en service en 1966, initialement pour le traitement du combustible des réacteurs de première génération UNGG. Cette installation, l'INB 33, dénommée « UP2-400 », pour « unité de production 2400 tonnes», a été définitivement arrêtée le 1er janvier 2004 avec des ateliers support: la STE2 et l'atelier de traitement des combustibles usés AT1 (INB 38), l'atelier de fabrication de sources radioactives ELAN IIB (INB 47) et l'atelier HAO, créé pour le traitement des combustibles des réacteurs à «eau légère» (INB 80). Certaines de ces installations ont connu des accidents qui ont conduit à une contamination des locaux et de leur environnement proche, comme l'incendie du silo 130 appartenant à l'INB 38 en 1981.

Contrairement aux déchets conditionnés directement en ligne que produisent les usines en fonctionnement (usines de traitement d'éléments combustibles irradiés provenant des réacteurs nucléaires à eau ordinaire - UP2-800 et UP3-A), la majeure partie des déchets produits par la première usine de retraitement ont été entreposés sans être traités ni conditionnés. Le démantèlement se fait donc en parallèle des opérations de RCD.

Actuellement, une dizaine de projets de ce type sont en cours dans les ateliers anciens (silos STE2, 115 et 130 dans l'INB 38, silo HAO dans l'INB 80). Ils vont se dérouler sur plusieurs décennies et sont un préalable au démantèlement complet de ces ateliers, alors que le démantèlement des parties de procédé de l'usine se poursuit avec des techniques plus classiques.

LES INSTALLATIONS SUPPORT (ENTREPOSAGE, TRAITEMENT DES EFFLUENTS ET DE DÉCHETS RADIOACTIFS)

Un bon nombre de ces installations, la plupart mises en service dans les années 1960, dont le niveau de sûreté n'était pas conforme aux meilleures pratiques actuelles, ont été arrêtées.

Les anciennes installations d'entreposage n'ont pas initialement été conçues pour permettre l'évacuation de leurs déchets et, pour certaines, le stockage de ces déchets y était envisagé comme définitif. À titre d'exemples, on peut citer les silos de Saint-Laurent-des-Eaux (INB 74), les fosses, tranchées et hangars du Parc d'entreposage des déchets radioactifs (INB 56), les puits de la ZGDS (INB 72) et de l'installation Support (INB 166). La reprise des déchets y est complexe et s'étendra sur plusieurs décennies. Les déchets doivent être ensuite conditionnés et réentreposés dans de bonnes conditions de sûreté. De nouvelles installations de conditionnement et d'entreposage sont ainsi en projet ou en cours de construction.

Les STE ont quant à elles été arrêtées du fait de leur vieillissement ou de l'arrêt du fonctionnement des installations productrices des effluents destinés à ces stations. À titre d'exemples, on peut citer l'INB 37-B de Cadarache et la STE2 de l'usine de La Hague (INB 38). Les difficultés associées au démantèlement des STE dépendent étroitement des conditions de l'arrêt de ces dernières, en particulier de leur vidange et du rinçage des cuves.

Le démantèlement de ces installations support soulève de nombreuses problématiques. D'une part, la méconnaissance de l'historique d'exploitation et de l'état de l'installation à démanteler (prise en compte de la corrosion de fûts de déchets ou de la pollution des sols résultant d'événements significatifs survenus lors de l'exploitation, par exemple) nécessite une caractérisation préalable des déchets anciens entreposés et des boues ou dépôts présents dans certaines cuves. D'autre part, tenant compte des quantités, des formes physico-chimiques, de la radiotoxicité des déchets contenus dans ces installations, l'exploitant doit développer des moyens et des compétences faisant appel à des techniques d'ingénierie complexes (radioprotection, chimie, mécanique, électrochimie, robotique, intelligence artificielle, etc.). En effet, ces déchets sont très irradiants et hétérogènes, étant composés d'éléments de structure issus du traitement de combustibles, de déchets technologiques, de gravats, de terres, de boues. Certains déchets ont été entreposés en vrac, sans tri préalable. Les opérations de reprise nécessitent donc des moyens de préhension téléopérés, des systèmes de convoyage, de tri, des systèmes de pompage des boues et de conditionnement des déchets. Le développement de ces moyens et la réalisation des opérations dans des conditions acceptables de sûreté et de radioprotection constituent un enjeu majeur pour l'exploitant. Ces opérations pouvant durer plusieurs décennies, la maîtrise du vieillissement des installations est aussi un défi.

3 / Les actions de l'ASN dans le champ des installations en démantèlement: une approche graduée

L'APPROCHE GRADUÉE EN FONCTION **DES ENJEUX DES INSTALLATIONS**

L'ASN assure le contrôle des installations en démantèlement, comme elle le fait pour les installations en fonctionnement. En particulier, le régime des INB s'applique également aux installations arrêtées définitivement. L'ASN met en œuvre une approche proportionnée à l'importance des risques ou inconvénients présentés par l'installation.

Les enjeux associés aux installations en démantèlement diffèrent de ceux en fonctionnement. Par exemple, les risques de rejets importants hors du site diminuent avec l'avancement des opérations de démantèlement, car la quantité de substances radioactives décroît. Aussi, les exigences liées à la maîtrise des risques et des impacts sont proportionnées aux enjeux portés par ces installations. L'ASN considère ainsi qu'il n'est généralement pas opportun d'engager des travaux de renforcement significatifs sur une installation en démantèlement, à condition que les opérations de démantèlement conduisent, dans des délais courts, à la réduction des sources de danger.

LES RÉEXAMENS PÉRIODIQUES DES INSTALLATIONS EN DÉMANTÈLEMENT

Compte tenu de la diversité des installations et des situations concernées, chaque réexamen nécessite la mise en œuvre d'une méthode d'instruction adaptée. Certaines installations en démantèlement méritent une attention particulière au regard des risques qu'elles présentent; elles peuvent faire l'objet d'un examen par le GPDEM. D'autres installations, présentant moins d'enjeux, font seulement l'objet d'inspections et d'instructions dont l'ampleur est adaptée. Ces inspections permettent de contrôler les moyens mis en œuvre par l'exploitant pour mener son réexamen ainsi que le suivi du plan d'action résultant de ses conclusions. Elles ont fait l'objet de différentes demandes d'actions correctives et de compléments.

LE FINANCEMENT DU DÉMANTÈLEMENT: AVIS DE L'ASN SUR LES RAPPORTS TRIENNAUX

Le cadre réglementaire de la sécurisation des fonds nécessaires à la gestion des charges de long terme pour le démantèlement et la gestion des déchets est présenté au point 1.4.

L'ASN a instruit en 2022 les rapports triennaux remis par les exploitants, portant sur les comptes clôturés fin 2021. Elle a publié l'avis n° CODEP-CLG-2022-061286 du 14 décembre 2022 et transmis ses observations au ministère chargé de l'énergie. Les prochains rapports triennaux seront remis en 2025.

De manière générale, l'ASN relève que le périmètre d'évaluation des charges pris en compte dans la majorité de ces rapports doit être complété car il ne prend pas en compte certaines opérations susceptibles de présenter de forts enjeux financiers, notamment les opérations préparatoires au démantèlement.

De plus, l'ASN estime que les états initiaux des sites au début de leur démantèlement doivent être décrits plus précisément, en tenant compte des éventuelles pollutions présentes dans les sols et dans les structures, et en évaluant les coûts d'assainissement associés. En effet, les hypothèses relatives à l'état initial des sites ne sont globalement pas assez robustes, alors qu'il est fondamental d'avoir une bonne connaissance de l'état des sites afin de pouvoir évaluer, de manière prudente, les charges de démantèlement.

Enfin, l'ASN souligne que les hypothèses retenues pour l'évaluation des coûts complets doivent être réévaluées, afin d'être raisonnablement prudentes pour ce qui concerne la planification des projets et des programmes de démantèlement, en tenant compte des risques liés à l'indisponibilité des installations d'entreposage, de traitement et de stockage.

4 / L'évaluation des stratégies de démantèlement des exploitants

Dans un contexte où de nombreuses installations sont arrêtées depuis plusieurs décennies, avec une perte de la connaissance des installations, des structures vieillissantes et parfois une quantité importante de déchets encore présente, le bon avancement des opérations de démantèlement est un enjeu majeur pour la sûreté de ces installations. Or, l'ASN a constaté que la plupart de ces opérations prenaient des retards importants. L'ASN demande donc régulièrement au CEA, à EDF et à Orano de présenter leur stratégie de démantèlement et de gestion des déchets radioactifs, ce qui permet de disposer d'une vision globale des projets de démantèlement et des filières de gestion nécessaires à l'évacuation des déchets radioactifs produits pendant les opérations de démantèlement.

En ce qui concerne le démantèlement, les exploitants doivent justifier, principalement par des analyses de sûreté, les opérations prioritaires. Cette hiérarchisation permet de contrôler que les moyens les plus importants seront consacrés aux opérations à plus fort enjeu, même si certains projets connaissent des retards significatifs.

En ce qui concerne la gestion des déchets radioactifs, l'ASN vérifie la cohérence des actions envisagées avec le cadre réglementaire et les orientations du PNGMDR. L'évaluation des stratégies de gestion des déchets radioactifs est présentée au chapitre 15.

L'ÉVALUATION DE LA STRATÉGIE D'EDF

Le premier dossier relatif à la stratégie de démantèlement des réacteurs définitivement à l'arrêt d'EDF (Chinon A1, A2, A3, Saint-Laurent A1 et A2, Bugey 1, EL4-D, Chooz A et Superphénix) a été transmis en 2001 à la demande de l'ASN. Le démantèlement immédiat avait été retenu comme stratégie de référence. Cette stratégie a été régulièrement mise à jour, afin d'ajuster le calendrier de démantèlement ou encore d'y intégrer les études complémentaires demandées par l'ASN et des éléments relatifs au démantèlement futur du parc de réacteurs en fonctionnement.

Pour les six réacteurs de première génération de type UNGG (Chinon A1, A2 et A3, Saint-Laurent A1 et A2, et Bugey 1), EDF a annoncé à l'ASN, en mars 2016, un changement complet de stratégie remettant en cause la principale technique retenue (démantèlement « sous eau ») pour réaliser le démantèlement de ces réacteurs et le cadencement des démantèlements, conduisant ainsi à retarder le démantèlement de l'ensemble des

réacteurs UNGG de plusieurs décennies. L'ASN se prononcera sur les délais de démantèlement présentés par EDF dans les dossiers de démantèlement qui ont été remis fin 2022 (en cours d'instruction par l'ASN), qui pourront également être revus s'il apparaît dans les décennies à venir que des optimisations de ce scénario sont possibles compte tenu du REX acquis. Cette stratégie de démantèlement des réacteurs UNGG est encadrée par deux décisions n° 2020-DC-0686 et n° CODEP-CLG-2020-021253 du 3 mars 2020 de l'ASN.

Ces décisions fixent les prochaines étapes nécessaires au changement de stratégie de démantèlement, notamment la définition d'une stratégie robuste de gestion des déchets de graphite, les opérations de démantèlement à poursuivre au cours des prochaines années et les informations à transmettre à l'ASN pour contrôler la mise en œuvre effective de la stratégie.

L'ASN considère qu'il est pertinent qu'EDF s'appuie sur le démonstrateur industriel graphite (mis en service en 2022 à Chinon) avant le démantèlement des caissons des réacteurs, mais qu'il convient néanmoins que le démantèlement des différents réacteurs soit engagé dans des délais raisonnables au regard de l'obligation de démantèlement dans des délais aussi courts que possible.

Concernant les autres installations d'EDF arrêtées (notamment Chooz A, l'AMI de Chinon, EL4-D, Superphénix), leurs démantèlements sont en cours et se déroulent globalement conformément à l'objectif d'un délai aussi court que possible.

L'ÉVALUATION DE LA STRATÉGIE D'ORANO

Le démantèlement d'installations anciennes constitue un enjeu majeur pour Orano, qui doit mener plusieurs projets de démantèlement de grande envergure sur des échelles de temps variables (usine UP2-400 de La Hague, usine Eurodif Production, installations individuelles de l'INBS de Pierrelatte, etc.). La mise en œuvre du démantèlement est étroitement liée à la stratégie de gestion des déchets radioactifs anciens, compte tenu de la quantité et du caractère non standard et difficilement caractérisable des déchets produits lors des opérations antérieures d'exploitation, ainsi que des opérations actuelles de démantèlement.

Par ailleurs, Orano doit réaliser, dans des installations anciennes d'entreposage, des opérations particulières de RCD. Des échéances de réalisation ont été prescrites par l'ASN, en particulier pour le site de La Hague. La réalisation de ces opérations de RCD conditionne la progression du démantèlement de l'usine UP2-400, la RCD figurant parmi les premières étapes du démantèlement de l'usine. Les chantiers de RCD revêtent une importance particulière, compte tenu de l'inventaire de substances radioactives présentes et du caractère ancien des installations les entreposant, qui ne répondent plus aux normes de sûreté actuelles.

Les projets de RCD se caractérisent, de plus, par une complexité importante, du fait des interactions avec les usines en fonctionnement sur le site. À la suite de difficultés constatées lors des instructions de dossiers relatifs aux opérations de RCD et de démantèlement du site d'Orano La Hague et des retards dans la réalisation des opérations par rapport aux échéances prescrites, l'ASN et Orano ont convenu de mettre en place un suivi régulier afin d'anticiper et traiter d'éventuelles situations de blocage et d'identifier les actions à mettre en place de façon pragmatique pour réaliser les opérations de RCD et de démantèlement dans les meilleurs délais.

Orano a transmis en juin 2016, à la demande de l'ASN et de l'Autorité de sûreté nucléaire de défense (ASND), sa stratégie de démantèlement et de gestion des déchets. Le dossier comprend également la déclinaison de cette stratégie sur les sites de La Hague et du Tricastin. Dans sa lettre de position du 14 février 2022, l'ASN a souligné les progrès faits par l'exploitant dans l'appropriation des objectifs de démantèlement priorisés suivant les enjeux des INB et les phases du démantèlement et le suivi par la gouvernance d'Orano des projets complexes de RCD et de démantèlement. L'ASN a également noté favorablement la décision d'Orano début 2023 de construire de nouveaux silos pour assurer la reprise des boues de l'ancienne STE (INB 38) sans attendre de disposer du procédé de conditionnement final de ces boues. Toutefois, l'ASN considère qu'Orano devrait poursuivre l'amélioration de sa connaissance de l'état actuel des installations et notamment des sols en vue de leur assainissement futur, progresser dans la fiabilisation industrielle des procédés de reprise des déchets et veiller à garantir les plannings des différents projets de RCD et de démantèlement annoncés.

L'ÉVALUATION DE LA STRATÉGIE DU CEA

Compte tenu du nombre et de la complexité des opérations à réaliser pour l'ensemble des installations nucléaires concernées, le CEA vise, en priorité, à réduire «l'inventaire dispersable» actuellement très important dans certaines installations, en particulier dans certaines installations individuelles de l'INBS de Marcoule, ainsi que dans les INB 56 et 72.

Dans leur lettre de position du 27 mai 2019, l'ASN et l'ASND ont considéré qu'il était acceptable, compte tenu des moyens alloués par l'État et du nombre important d'installations en démantèlement pour lesquelles des capacités de reprise de déchets anciens, ainsi que d'entreposage devront être construites, que le CEA prévoie un échelonnement des opérations de démantèlement et que la priorité soit accordée aux installations aux plus forts enjeux de sûreté. Les autorités ont depuis constaté des évolutions dans les calendriers de RCD présentés par le CEA, en particulier des reports d'échéance concernant la gestion des déchets, y compris pour des opérations considérées comme prioritaires. L'ASN et le CEA ont mis en place un suivi régulier de ces opérations, notamment au travers d'indicateurs d'avancement.

Toutefois, l'ASN constate que les stratégies de démantèlement et de gestion des matières et de déchets du CEA présentent des vulnérabilités croisées relatives en particulier à la disponibilité d'installations support, souvent uniques mais nécessaires à la mise en œuvre de nombreux projets. Les stratégies du CEA s'appuient en effet sur la mutualisation des moyens entre ses centres et reposent sur l'utilisation d'installations qui sont pour certaines à l'état de projet, en phase de mise en service ou en cours de rénovation. La plupart d'entre elles sont uniques et sans alternative opérationnelle évidente en cas de défaillance. L'ensemble de ces éléments constitue des points de fragilité de la stratégie du CEA.

Annexe

INB Liste des installations nucléaires de base en cours de démantèlement ou déclassées au 31 décembre 2022

INSTALLATION LOCALISATION	N°INB	TYPE D'INSTALLATION	MISE EN SERVICE	ARRÊT DÉFINITIF	DERNIERS ACTES RÉGLEMENTAIRES	ÉTAT ACTUEL
Néréide (Fontenay-aux-Roses)	(ex-INB 10)	Réacteur (500 kWth)	1960	1981	1987: retiré de la liste des INB	Démantelé
Triton (Fontenay-aux-Roses)	(ex-INB 10)	Réacteur (6,5 MWth)	1959	1982	1987: retiré de la liste des INB et classé en ICPE	Démantelé
ZOÉ (Fontenay-aux-Roses)	(ex-INB 11)	Réacteur (250 kWth)	1948	1975	1978 : retiré de la liste des INB et classé en ICPE	Confiné (musée)
Minerve (Fontenay-aux-Roses)	(ex-INB 12)	Réacteur (0,1 kWth)	1959	1976	1977: retiré de la liste des INB	Démonté à Fontenay- aux-Roses et remonté à Cadarache
EL2 (Saclay)	(ex-INB 13)	Réacteur (2,8 MWth)	1952	1965	Retiré de la liste des INB	Partiellement démantelé, parties restantes confinées
EL3 (Saclay)	(ex-INB 14)	Réacteur (18 MWth)	1957	1979	1988: retiré de la liste des INB et classé en ICPE	Partiellement démantelé, parties restantes confinées
Ulysse (Saclay)	(ex-INB 18)	Réacteur (100 kWth)	1967	2007	_	Démantelé
Mélusine (Grenoble)	(ex-INB 19)	Réacteur (8 MWth)	1958	1988	2011 : retiré de la liste des INB	Démantelé
Siloé (Grenoble)	(ex-INB 20)	Réacteur (35 MWth)	1963	2005	2015: retiré de la liste des INB	Démantelé-RUCPE (*)
Siloette (Grenoble)	(ex-INB 21)	Réacteur (100 kWth)	1964	2002	2007 : retiré de la liste des INB	Démantelé-RUCPE (*)
Peggy (Cadarache)	(ex-INB 23)	Réacteur (1 kWth)	1961	1975	1976: retiré de la liste des INB	Démantelé
César (Cadarache)	(ex-INB 26)	Réacteur (10 kWth)	1964	1974	1978 : retiré de la liste des INB	Démantelé
Marius (Cadarache)	(ex-INB 27)	Réacteur (0,4 kWth)	1960 à Marcoule, 1964 à Cadarache	1983	1987: retiré de la liste des INB	Démantelé
Ancienne usine Le Bouchet (Vert-le-Petit)	(ex-INB 30)	Traitement de minerais	1953	1970	Retiré de la liste des INB	Démantelé
Ancienne usine de traitement de minerais (Gueugnon)	(ex-INB 31)	Traitement de minerais	1965	1980	Retiré de la liste des INB	Démantelé
STED (Fontenay-aux-Roses)	(ex-INB 34)	Traitement des déchets solides et liquides	Avant 1964	2006	2006: retiré de la liste des INB	Intégré à l'INB 166
STED et Unité d'entreposage de déchets de haute activité (Grenoble)	(ex-INB 36 et 79)	Station de traitement de déchets et entreposage de déchets	1964/1972	2008	2023: retiré de la liste des INB	Démantelé
STED (Cadarache)	(ex-INB 37)	Transformation de substances radioactives	1964	2015	2015: retiré de la liste des INB	Intégré aux INB 37-A et 37-B
Harmonie (Cadarache)	(ex-INB 41)	Réacteur (1 kWth)	1965	1996	2009 : retiré de la liste des INB	Destruction du bâtiment, servitudes
ALI (Saclay)	(ex-INB 43)	Accélérateur	1958	1996	2006: retiré de la liste des INB	Démantelé-RUCPE (*)
Réacteur universitaire de Strasbourg	(ex-INB 44)	Réacteur (100 kWth)	1967	1997	2012 : retiré de la liste des INB	Démantelé-RUCPE (*)
Saturne (Saclay)	(ex-INB 48)	Accélérateur	1966	1997	2005 : retiré de la liste des INB	Démantelé-RUCPE (*)
Attila ^(**) (Fontenay-aux-Roses)	(ex-INB 57)	Pilote de retraitement	1968	1975	2006: retiré de la liste des INB	Intégré à l'INB 165
LCPu (Fontenay-aux-Roses)	(ex-INB 57)	Laboratoire de chimie du plutonium	1966	1995	2006: retiré de la liste des INB	Intégré à l'INB 165
BAT 19 (Fontenay-aux-Roses)	(ex-INB 58)	Métallurgie du plutonium	1968	1984	1984: retiré de la liste des INB	Démantelé
RM2 (Fontenay-aux-Roses)	(ex-INB 59)	Radio-métallurgie	1968	1982	2006: retiré de la liste des INB	Intégré à l'INB 165
LCAC (Grenoble)	(ex-INB 60)	Analyse de combustibles	1975	1984	1997 : retiré de la liste des INB	Démantelé
LAMA (Grenoble)	(ex-INB 61)	Laboratoire	1968	2002	2017 : retiré de la liste des INB	Démantelé

INSTALLATION			MISE EN	ARRÊT	DERNIERS ACTES	4-
LOCALISATION	N°INB	TYPE D'INSTALLATION	SERVICE	DÉFINITIF	RÉGLEMENTAIRES	ÉTAT ACTUEL
SICN (Veurey-Voroize)	(ex-INB 65 et 90)	Usine de fabrication de combustibles	1963	2000	2019: retiré de la liste des INB	Bâtiments déconstruits, servitudes d'utilité publique
STEDs (Fontenay-aux-Roses)	(ex-INB 73)	Entreposage de décroissance de déchets radioactifs	1971	2006	2006: retiré de la liste des INB	Intégré à l'INB 166
ARAC (Saclay)	(ex-INB 81)	Fabrication d'assemblages combustibles	1981	1995	1999: retiré de la liste des INB	Démantelé
LURE (Bures-sur-Yvette)	(ex-INB 106)	Accélérateurs de particules	de 1956 à 1987	2008	2015: retiré de la liste des INB	Démantelé-SUP (***)
IRCA (Cadarache)	(ex-INB 121)	Irradiateur	1983	1996	2006: retiré de la liste des INB	Démantelé-RUCPE (*)
FBFC (Pierrelatte)	(ex-INB 131)	Fabrication de combustible	1990	1998	2003 : retiré de la liste des INB	Démantelé-RUCPE ^(*)
Magasin d'uranium (Miramas)	(ex-INB 134)	Magasin de matières uranifères	1964	2004	2007: retiré de la liste des INB	Démantelé-RUCPE ^(*)
SNCS (Osmanville)	(ex-INB 152)	Ionisateur	1983	1995	2002: retiré de la liste des INB	Démantelé-RUCPE ^(*)
Pégase (Cadarache)	22	Réacteur et entreposage de substances radioactives	1964	2017	-	Préparation au démantèlement
Rapsodie (Cadarache)	25	Réacteur (40 MWth)	1967	1983	2021: décret de démantèlement partiel	En cours de démantèlement
ATPu (Cadarache)	32	Usine de fabrication de combustible	1962	2003	2009: décret de mise à l'arrêt définitif et de démantèlement	En cours de démantèlement
Usine de traitement des combustibles irradiés – UP2-400 (La Hague)	33	Transformation de substances radioactives	1964	2004	2022: décret de démantèlement partiel	En cours de démantèlement
STE (Cadarache)	37-B	Station de traitement des effluents (partie non pérenne de l'ex-INB 37)	2015	2016	_	Préparation au démantèlement
STE2 (La Hague)	38	Station de traitement des effluents	1964	2004	2022: décret de démantèlement partiel	En cours de démantèlement
Masurca (Cadarache)	39	Réacteur (5 kWth)	1966	2018	_	Préparation au démantèlement
Osiris-Isis (Saclay)	40	Réacteur (70 MWth)	1966	2015	-	Préparation au démantèlement
Éole / Minerve (Cadarache)	42-U	Réacteur (1 kWth) et Réacteur (100 Wth)	1965 et 1977	2017	2023: décret de démantèlement et de réunion des deux INB (Eole et Minerve)	En cours de démantèlement
Bugey 1 (Saint-Vulbas)	45	Réacteur (1920 MWth)	1972	1994	2008: décret de mise à l'arrêt définitif et de démantèlement	En cours de démantèlement
St-Laurent-des-Eaux Al (St-Laurent-Nouan)	46	Réacteur (1662 MWth)	1969	1990	2010: décret de démantèlement	En cours de démantèlement
St-Laurent-des-Eaux A2 (St-Laurent-Nouan)	46	Réacteur (1801 MWth)	1971	1992	2010: décret de démantèlement	En cours de démantèlement
ELAN IIB (La Hague)	47	Fabrication de sources de césium-137	1970	1973	2013: décret de démantèlement	En cours de démantèlement
LHA (Saclay)	49	Laboratoire	1960	1996	2008: décret de mise à l'arrêt définitif et de démantèlement	En cours de démantèlement
ATUe (Cadarache)	52	Traitement d'uranium	1963	1997	2021: décret modifiant le décret de démantèlement de 2006	En cours de démantèlement
MCMF (Cadarache)	53	Entreposage de substances radioactives	1968	2017	-	Préparation au démantèlement
LPC (Cadarache)	54	Laboratoire	1966	2003	2009: décret de mise à l'arrêt définitif et de démantèlement	En cours de démantèlement
Parc d'entreposage	56	Entreposage de substances radioactives	1968	2023	-	Préparation au démantèlement
Phénix (Marcoule)	71	Réacteur (536 MWth)	1973	2009	2016: décret de démantèlement	En cours de démantèlement
ZGDS (Saclay)	72	Transformation de substances radioactives	1971	2022	2022: décret de démantèlement	Préparation au démantèlement

INSTALLATION LOCALISATION	N° INB	TYPE D'INSTALLATION	MISE EN SERVICE	ARRÊT DÉFINITIF	DERNIERS ACTES RÉGLEMENTAIRES	ÉTAT ACTUEL
Silos de Saint-Laurent (St-Laurent-Nouan)	74	Entreposage de déchets radioactifs	1971	2022	-	Préparation au démantèlement
Centrale nucléaire de Fessenheim (Fessenheim)	75	Réacteurs (2660 MWth chacun)	1977	2020	-	Préparation au démantèlement
Atelier HAO (La Hague)	80	Transformation de substances radioactives	1974	2004	2009: décret de mise à l'arrêt définitif et de démantèlement	En cours de démantèlement
Superphénix (Creys-Malville)	91	Réacteur (3000 MWth)	1985	1997	2009: décret de mise à l'arrêt définitif et de démantèlement	En cours de démantèlement
Phébus (Cadarache)	92	Réacteur (40 MWth)	1978	2017	_	Préparation au démantèlement
Eurodif (Pierrelatte)	93	Transformation de substances radioactives	1979	2012	2020 : décret de démantèlement partiel	En cours de démantèlement partiel
AMI (Chinon)	94	Utilisation de substances radioactives	1964	2015	2020 : décret de démantèlement	En cours de démantèlement
Orphée (Saclay)	101	Réacteur (14 MWth)	1980	2019	-	Préparation au démantèlement
Comurhex (Tricastin)	105	Usine de transformation chimique de l'uranium	1979	2009	2019: décret de démantèlement	En cours de démantèlement
Chinon Al D – ex-Chinon Al (Avoine)	133 (ex-INB 5)	Réacteur (300 MWth)	1963	1973	1982: décret de confinement de Chinon AI et de création de l'INB d'entreposage Chinon AI D	Partiellement démantelé, modifié en INB d'entreposage des déchets laissés en place. Préparation au démantèlement complet
Chinon A2 D – ex-Chinon A2 (Avoine)	153 (ex-INB 6)	Réacteur (865 MWth)	1965	1985	1991: décret de démantèlement partiel de Chinon A2 et de création de l'INB d'entreposage Chinon A2 D	Partiellement démantelé, modifié en INB d'entreposage des déchets laissés en place. Préparation au démantèlement complet
Chinon A3 D – ex-Chinon A3 (Avoine)	161 (ex- INB 7)	Réacteur (1360 MWth)	1966	1990	2010 : décret de démantèlement	En cours de démantèlement
EL4-D – ex-EL4 (Brennilis)	162 (ex-INB 28)	Réacteur (250 MWth)	1966	1985	1996: décret de démantèlement et de création de l'INB d'entreposage EL4-D 2006: décret de mise à l'arrêt définitif et de démantèlement 2007: décision du Conseil d'État annulant le décret de 2006 2011: décret de démantèlement partiel 2023: décret de démantèlement complet	En cours de démantèlement
Centrale nucléaire des Ardennes – ex-Chooz A (Chooz)	163 (ex-INB1,2,3)	Réacteur (1040 MWth)	1967	1991	2007: décret de mise à l'arrêt définitif et de démantèlement	En cours de démantèlement
Procédé (Fontenay-aux-Roses)	165	Regroupement des anciennes installations (INB 57 et 59) de recherche concernant les procédés de retraitement	2006	2006	2006: décret de mise à l'arrêt définitif et de démantèlement	En cours de démantèlement
Base chaude opérationnelle du Tricastin (Tricastin)	157	Laboratoire	2000	2020	2023 : décret de démantèlement	En cours de démantèlement
Support (Fontenay-aux-Roses)	166	Regroupement des anciennes installations (INB 34 et 73) de conditionnement et traitement des déchets et des effluents	2006	2006	2006: décret de mise à l'arrêt définitif et de démantèlement	En cours de démantèlement

^{*} Restriction d'usage conventionnelle au profit de l'État. ** Attila: pilote de retraitement situé dans une cellule de l'INB 57. *** Servitude d'utilité publique.