Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 1/53	Installation :	Type de document*: NT	orano
Ancien Code : Référence RGF :		Objet / Titre*: EVALUATION REJETS DU LEA	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX

	DOCUI	MENTUM est la s	eule	base de référence d	es docume	nts applicables	
Rôl	e	Nom Prénom		Fonction/E	ntité	Date	/Visa
Rédact	teur*			3SE-PP / SEP		07/12/21	
Vérifica	iteur*			3SE-PP / S	SEP	07/12/21	8
Vérifica	ateur						
Vérifica	ateur						
Vérifica	ateur						
Approb	ateur*			Chef d'Installat	ion LEA	07/12/2521	a
DIFFUSIO	ON DU DOCUME	NT*					
Destinata	ires internes po	ur APPLICATION	Destir	nataires internes pour <u>INF</u>	ORMATION	Destinataires exte	ernes
TABLEAU	J DE SUIVI DES	REVISIONS*					
Version	Date	Motif de la création	ո, Dés	ignation et origine des m	odifications		
1.0	20/03/2020	Création					
2.0	07/12/2021	Mise à jour avec do	nnées	2019 et 2020			
		1					
SUIVI DE	S REVUES* - Pé	riodicité de revue (e	n ann	ée):			
	Date	Décision sui	te à la	revue (cocher)		Visa	
Echéan	ce de revue	evue Applicable sans révision		Document à réviser	Date	Nom/ Fonction	Visa
Classement du document : Etablissement*: TRICASTIN Activité*:		-	Accès au document* : Public	Confid	dentialité* : ale		
Sous activité : Activité liée :				Dual U	se 🗆		
Numéro d							
Satellite/							
Domaine d'expertise : D05 - Environnement							

^{*} A renseigner obligatoirement et en cohérence avec choix proposés par DOCUMENTUM

Référence*: TRICASTIN-20-0	02591	Orano Chimie		
Version 2.0	PAGE 2/53	Installation:	Type de document*: NT	orano
Ancien Code:		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

SOMMAIRE

1	O	BJ	ET DU DOCUMENT 7	
2	D	ОС	UMENTS DE REFERENCE 7	
3	7	YPO	OLOGIES DES EFFETS DES SUBSTANCES RADIOACTIVES 8	
	3.1	lı	ntroduction	8
	3.2		Rappels	
		2.1	Induction des effets déterministes (réactions tissulaires nocives)	
	3.	2.2	Induction des effets stochastiques	
		3.2.	2.1 Risque de cancer	11
		3.2.	2.2 Risque d'effets héréditaires	11
		3.2.	2.3 Coefficients de risque nominal ajusté au détriment sanitaire	12
		3.2.	2.4 Induction des maladies autres que le cancer	13
		3.2.	2.5 Effets des rayonnements sur l'embryon et le fœtus	13
4	IV	1ET	HODOLOGIE D'EVALUATION DE L'IMPACT DOSIMETRIQUE14	
	4.1	S	Schéma général	14
	4.2	E	stimation de la dispersion	15
	4.	2.1	Dispersion atmosphérique	15
	4.	2.2	Dispersion liquide	15
	4.3	C	Calcul d'exposition et mécanismes de transfert vers l'homme	15
	4.	3.1	Transfert des radionucléides contenus dans les rejets atmosphériques	17
	4.	3.2	Transfert des radionucléides contenus dans les rejets liquides	17
5	L	OG.	ICIEL DE MODELISATION DE L'IMPACT DOSIMETRIQUE18	
6	D	ON	NEES D'ENTREE LIEES A L'INSTALLATION19	
	6.1	Т	erme source	19
	6.	1.1	Estimation des rejets atmosphériques	19
	6.	1.2	Prise en compte des radionucléides rejetés dans le logiciel COMODORE	20
	6.	1.3	Estimation des rejets liquides	21
	6.2	F	lations alimentaires et taux d'autoconsommation	21
	6.3	lı	ngestion de terre par inadvertance	22
	6.4	S	Scénarios d'exposition retenus	22
	6.5	D	Ourée de fonctionnement	22
7	S	ELE	ECTION DES GROUPES DE POPULATION LES PLUS EXPOSES23	
	7.1		Contexte	23
	7.2		léthodologie de la sélection des groupes de population	
	7.	2.1	Etape 1 : recensement des populations situées à proximité de la plateforme Orano du Tricastin	

Référence*: TRICASTIN-20-002591		Orano Chimie		
Version 2.0	PAGE 3/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

			pe 2 : sélection des groupes de population les plus exposés aux rejets		26
8	DOI	NNE	ES D'ENTREE DES CALCULS DE DISPERSION	29	
8	3.1	Calc	ul de dispersion dans le milieu atmosphérique		29
	8.1.1	Do	nnées météorologiques		.29
	8.1.2	Gro	oupes de population retenus		.32
	8.1	1.2.1	Coordonnées géographiques		.32
	8.1	1.2.2	Distance et azimut des groupes de population par rapport à l'émissaire de rejets		.33
8	3.2	Calc	ul de dispersion dans le milieu aquatique		33
9	DOS	SE E	FFICACE GLOBALE ANNUELLE	34	
10	COI	VCL	JSION SUR LE CALCUL D'IMPACT DOSIMETRIQUE	35	
11	ÉVA	\LU/	TION DES INCERTITUDES	36	
			titudes associées à la caractérisation des émissions		36
			titudes associées à la modélisation de la dispersion atmosphérique		
			titudes associées au calcul de dose		
			des incertitudes		
			. D'IMPACT DETAILLE POUR LE GROUPE LE PLUS EXPOSE : « CEN		J <i>1</i>
			» (P4)		
			ctéristiques du groupe de population le plus exposé		38
			uation des transferts dans les différents milieux d'exposition		
•	12.2.		Activité dans les sols due aux rejets atmosphériques (Bq/m²)		
	12.2.		Activité dans les produits d'origine animale due aux rejets atmosphériques (Bq/kg)		
			Hors Tritium, Carbone 14 et gaz rares		
			Tritium, Carbone 14 et gaz rares		
	12.2.		Activité dans le lait de vache due aux rejets atmosphériques (Bq/l)		
	12		Hors Tritium, Carbone 14 et gaz rares		
			Tritium, Carbone 14 et gaz rares		
	12.2.		Activité dans les végétaux due aux rejets atmosphériques (Bq/kg frais)		
	12		Hors Tritium, Carbone 14 et gaz rares		
			Tritium, Carbone 14 et gaz rares		
	12.2.	5 <i>A</i>	Activité dans les produits dérivés due aux rejets atmosphériques (Bq/kg frais ou Bq/l)		.42
	12	.2.5.1	Hors Tritium, Carbone 14 et gaz rares		42
	12	.2.5.2	Tritium, Carbone 14 et gaz rares		42
	12.2.	6 <i>A</i>	Activité dans l'air due aux rejets atmosphériques (Bq/m³)		43
	12	.2.6.1	Hors Tritium, Carbone 14 et gaz rares		43
	12	.2.6.2	Tritium, Carbone 14 et gaz rares		43
1	2.3	Évalı	uation des niveaux d'exposition internes de la population		44

Référence*: TRICASTIN-20-0	02591	Orano Chimie		
Version 2.0	PAGE 4/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

13.1 Annexe 1 : Détermination du terme source	50
13 ANNEXE	
12.4.2 Résultats détaillés du calcul de dose par radionucléide	49
12.4.1 Résultats détaillés du calcul de dose par voie d'exposition	48
12.4 Résultats détaillés du calcul de dose	48
12.3.5.2 Tritium, Carbone 14 et gaz rares	48
12.3.5.1 Hors Tritium, Carbone 14 et gaz rares	47
12.3.5 Activité inhalée (Bq/an)	47
12.3.4 Activité ingérée due aux rejets atmosphériques - Ingestion de sol par inadvertance (Bq/an)	47
12.3.3.2 Tritium, Carbone 14 et gaz rares	46
12.3.3.1 Hors Tritium, Carbone 14 et gaz rares	46
12.3.3 Activité ingérée due aux rejets atmosphériques - Ingestion de produits dérivés (Bq/an)	46
12.3.2.2 Tritium, Carbone 14 et gaz rares	45
12.3.2.1 Hors Tritium, Carbone 14 et gaz rares	44
12.3.2 Activité ingérée due aux rejets atmosphériques - Ingestion de végétaux (Bq/an)	44
12.3.1.2 Tritium, Carbone 14 et gaz rares	44
12.3.1.1 Hors Tritium, Carbone 14 et gaz rares	44
12.3.1 Activité ingérée due aux rejets atmosphériques - Ingestion de produits d'origine animale	44

Référence*: TRICASTIN-20-002591		Orano Chimie		
Version 2.0	PAGE 5/53	Installation :	Type de document*: NT	orano
Ancien Code:		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

LISTE DES TABLEAUX

Tableau 1 : Unités de mesure de la dose	g
Tableau 2 : Facteurs de pondération pour les rayonnements (source : IRSN, 2009 [2])	g
Tableau 3 : Facteurs de pondération tissulaires recommandés (Source : IRSN, 2009 [2])	g
Tableau 4 : Coefficient de risque nominal ajusté au détriment (1.10 ⁻² Sv ⁻¹) pour les effets stochastiques aj exposition aux rayonnements à faible débit de dose (Source : IRSN, 2007 [2])	
Tableau 5 : Terme source atmosphérique du LEA	20
Tableau 6 : Terme source atmosphérique renseigné dans le logiciel COMODORE	21
Tableau 7 : Rations alimentaires (source : IRSN, 2010)	22
Tableau 8 : Ingestion de terre par inadvertance	22
Tableau 9 : Recensement des populations au voisinage de la plateforme Orano du Tricastin	26
Tableau 10 : Liste des groupes de population retenus dans le cadre de cette étude	28
Tableau 11 : Fréquence en origine des vents en fonction des différents secteurs de la rose des vents pour conditions stables (2018 à 2020)	
Tableau 12 : Fréquence en origine des vents en fonction des différents secteurs de la rose des vents pour conditions instables en présence de précipitations (2018 à 2020)	
Tableau 13 : Fréquence en origine des vents en fonction des différents secteurs de la rose des vents pour conditions instables en l'absence de précipitations (2018 à 2020)	
Tableau 14 : Coordonnées des groupes de population sélectionnés	32
Tableau 15 : Distance et azimut entre la cheminée du LEA et les groupes de population sélectionnés	33
Tableau 16 : Doses efficaces globales annuelles pour les différentes classes d'âge	34
Tableau 17 : Paramètres de dispersion atmosphérique du groupe de population le plus exposé « Cent biomasse (P4) »	
Tableau 18 : Activité dans les sols due aux rejets atmosphériques	38
Tableau 19 : Activité dans les produits d'origine animale due aux rejets atmosphériques - Hors ³ H, ¹⁴ C et rares	
Tableau 20 : Activité dans les produits d'origine animale due aux rejets atmosphériques - ³ H, ¹⁴ C et gaz ra	
Tableau 21 : Activité dans le lait de vache due aux rejets atmosphériques - Hors ³ H, ¹⁴ C et gaz rares	40
Tableau 22 : Activité dans le lait de vache due aux rejets atmosphériques - ³ H, ¹⁴ C et gaz rares	40
Tableau 23 : Activité dans les végétaux due aux rejets atmosphériques - Hors ³ H, ¹⁴ C et gaz rares	41
Tableau 24 : Activité dans les végétaux due aux rejets atmosphériques - ³ H, ¹⁴ C et gaz rares	41
Tableau 25 : Activité dans les produits dérivés due aux rejets atmosphériques - Hors ³ H, ¹⁴ C et gaz rares	42
Tableau 26 : Activité dans les produits dérivés due aux rejets atmosphériques - ³ H, ¹⁴ C et gaz rares	42
Tableau 27 : Activité dans l'air due aux rejets atmosphériques - Hors ³ H, ¹⁴ C et gaz rares	43
Tableau 28 : Activité dans l'air due aux reiets atmosphériques - ³ H. ¹⁴ C et gaz rares	43

Référence*: TRICASTIN-20-002591		Orano Chimie		
Version 2.0	PAGE 6/53	Installation :	Type de document*: NT	orano
Ancien Code:		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

Tableau 29 : Activité ingérée due aux rejets atmosphériques - Ingestion de produit d'origine animal - Hors ³ H, ¹⁴ C et gaz rares
Tableau 30 : Activité ingérée due aux rejets atmosphériques - Ingestion de produit d'origine animal - ³ H, ¹⁴ C et gaz rares
Tableau 31 : Activité ingérée due aux rejets atmosphériques - Ingestion de végétaux - Hors ³ H, ¹⁴ C et gaz rares45
Tableau 32 : Activité ingérée due aux rejets atmosphériques - Ingestion de végétaux - ³ H, ¹⁴ C et gaz rares . 45
Tableau 33 : Activité ingérée due aux rejets atmosphériques - Ingestion de produits dérivés - Hors ³ H, ¹⁴ C et gaz rares
Tableau 34 : Activité ingérée due aux rejets atmosphériques - Ingestion de produits dérivés - ³ H, ¹⁴ C et gaz rares
Tableau 35 : Activité ingérée due aux rejets atmosphériques - Ingestion de sols par inadvertance47
Tableau 36 : Activité inhalée - Hors ³ H, ¹⁴ C et gaz rares
Tableau 37 : Activité inhalée - ³ H, ¹⁴ C et gaz rares
Tableau 38 : Dose efficace globale (mSv/an) par voie d'exposition chez l'adulte au groupe « Centrale biomasse (P4) »
Tableau 39 : Dose efficace globale (mSv/an) par radionucléide chez l'adulte au groupe « Centrale biomasse » 49
Tableau 40 : Détermination du terme source (1/2)
Tableau 41 : Détermination du terme source (2/2)
LISTE DES FIGURES
Figure 1 : Pouvoir de pénétration des rayonnements ionisants sur l'organisme (source : INSTN [1])
Figure 2 : Classement des doses de l'UNSCEAR (United Nation Scientific Committee on the Effects of Atomic Radiation)
Figure 3 : Schématisation des effets liés à l'exposition aux rayonnements ionisants (source : INSTN)
Figure 4 : Schéma général du calcul d'impact dosimétrique
Figure 5 : Représentation schématique des différentes voies d'exposition potentielles de l'homme
Figure 6 : Localisation des populations au voisinage de la plateforme Orano du Tricastin
Figure 7 : Sélection et localisation des groupes de population
Figure 8 : Rose des vents à 10 m sur la période de 2018 à 2020 (station météorologique du Tricastin, « La Piboulette »)
Figure 9 : Illustration de l'impact dosimétrique annuel lié aux rejets du LEA au groupe de population le plus exposé

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 7/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

1 OBJET DU DOCUMENT

Le Laboratoire Etalon Activité (LEA) a pour principale activité la fabrication et la distribution de sources radioactives destinées au secteur de la recherche, de l'industrie et de la médecine nucléaire. Il est localisé sur la plateforme Orano du Tricastin.

La présente étude a pour objectif d'évaluer l'impact dosimétrique sur l'homme lié aux rejets radiologiques du LEA. Cette évaluation est réalisée à l'aide de l'outil COMODORE.

2 DOCUMENTS DE REFERENCE

- [1] INSTN, 2006 Radioprotection et ingénierie nucléaire H. Métivier Ed. EDP Science.
- [2] IRSN, 2009 Publication 103 de La CIPR Recommandations 2007 de la Commission internationale de protection radiologique Édition en langue française par J.C. Nénot assisté de J. Brenot, D. Laurier, A. Rannou et D. Thierry Ed. Tec & Doc.
- [3] AERGON, 2013 Evolution des paramètres utilisés dans COMODORE version avril 2007 à version 2012 11AREP034RAP03C.
- [4] AERGON, 2012 Notice théorique COMODORE version 2012 11AREP034RAP06C.
- [5] Arrêté du 1^{er} septembre 2003 définissant les modalités de calcul des doses efficaces et des doses équivalentes résultant de l'exposition des personnes aux rayonnements ionisants.
- [6] US-EPA, 1993 Federal Guidance Report n°12 External exposure to radionuclides in air, water and soil EPA-402-R-93-081.
- [7] IRSN, 2010 Résultats de l'enquête alimentaire autour du site nucléaire du Tricastin (2004-2005) DEI/SESURE/2010-31.
- [8] INERIS, 2002 Méthodes pour l'évaluation et la prévention des risques accidentels (DRA-006) Dispersion atmosphérique (Mécanismes et outils de calcul) INERIS-DRA-2002-25427.
- [9] InVS, CSTB, 2008 Estimation du temps passé à l'intérieur du logement de la population française A. Zeghnoun et al., S. Kirchner et al.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 8/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

3 TYPOLOGIES DES EFFETS DES SUBSTANCES RADIOACTIVES

3.1 Introduction

La plupart des effets nuisibles pour la santé de l'exposition aux rayonnements ionisants peuvent être regroupés en deux catégories générales :

- les « effets déterministes » (réactions tissulaires nocives) dus en grande partie à l'élimination / dysfonctionnement de cellules à la suite de fortes doses ;
- les « effets stochastiques », c'est-à-dire le cancer et les effets héréditaires impliquant soit le développement d'un cancer chez des individus exposés du fait de la mutation de cellules somatiques, soit une maladie héréditaire chez leur descendance du fait de la mutation des cellules reproductives (germinales).

Les effets sur l'embryon et le fœtus, ainsi que les maladies autres que le cancer, sont également pris en considération.

3.2 Rappels

Les éléments radioactifs présents dans l'environnement émettent des rayonnements alpha, bêta et gamma :

- les rayonnements gamma sont des ondes électromagnétiques ;
- les rayonnements alpha et bêta sont des particules : alpha est un noyau d'hélium, bêta est un électron ou positron.

Les effets biologiques des rayonnements ionisants (c'est-à-dire capables de provoquer des réactions générant des ions, particules chargées positivement ou négativement) dépendent :

- de la nature du spectre énergétique et du pouvoir de pénétration dans les tissus ;
- de la quantité totale d'énergie reçue dans un volume tissulaire ou « dose » ;
- des conditions d'exposition : externe ou interne ;
- du type d'irradiation.

La grandeur utilisée pour comparer les effets des expositions aux rayonnements ionisants est la dose.

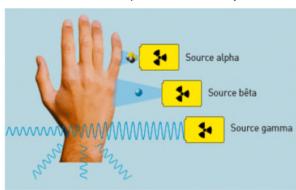


Figure 1 : Pouvoir de pénétration des rayonnements ionisants sur l'organisme (source : INSTN [1])

La dose dépend des dépôts d'énergie dans l'organisme en provenance des rayonnements. Ces dépôts d'énergie sont à l'origine de modifications physiques et chimiques susceptibles d'entraîner des dommages biologiques. L'importance des dommages résultants dépend non seulement de la quantité d'énergie absorbée mais aussi du type de rayonnement et de la sensibilité de l'organe irradié.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 9/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

Le tableau suivant présente les unités de mesure de la dose.

Dose	Dose absorbée (D)	Dose équivalente (HT)	Dose efficace (E)
Unité	Gray (Gy)	Sievert (Sv)	Sievert (Sv)
Définition	Quantité d'énergie communiquée à la matière par unité de masse (joules/kg)	Dose absorbée par le tissu ou l'organe T, pondérée suivant le type et la qualité du rayonnement ionisant	Somme des doses équivalentes pondérées délivrées aux différents tissus et organes par l'irradiation interne et externe

Tableau 1 : Unités de mesure de la dose

Les tableaux qui suivent récapitulent les facteurs de pondération (facteurs de sensibilité des tissus) pour les rayonnements (utilisés pour le calcul de la dose équivalente) et les facteurs de pondération pour les tissus (utilisés pour le calcul de la dose efficace).

Particule / énergie	Facteur de pondération Recommandations CIPR 103 [*]
Photons, toutes énergies	1
Électrons et muons, toutes énergies	1
Protons	2
Particules α, fragments de fission, noyaux lourds	20
Neutrons	Fonction continue

^{*} La Commission Internationale de Protection Radiologique (CIPR) publie, à intervalles réguliers, des recommandations générales qui constituent l'un des principaux documents de référence internationaux en radioprotection. La dernière édition est la Publication 103 parue fin 2007 (CIPR 103). Elle remplace la Publication 60 parue en 1991 (CIPR 60).

Tableau 2: Facteurs de pondération pour les rayonnements (source: IRSN, 2009 [2])

Organe	Facteur de pondération	Somme des facteurs de pondération
Moelle épinière, sein, colon, poumon, estomac, tissus restants*	0,12	0,72
Gonades	0,08	0,08
Vessie, œsophage, foie, thyroïde	0,04	0,16
Os, cerveau, glandes salivaires, peau	0,01	0,04

^{*} Tissus restants : surrénales, région extrathoracique (ET), vésicule biliaire, cœur, reins, ganglions lymphatiques, muscle, muqueuse buccale, pancréas, prostate (♂), intestin grêle, rate, thymus, utérus/col de l'utérus (♀).

Tableau 3 : Facteurs de pondération tissulaires recommandés (Source : IRSN, 2009 [2])

Le sievert est donc une unité additive : elle permet d'additionner des irradiations qui vont concerner plusieurs secteurs de l'organisme. Par exemple, si on irradie la peau et la thyroïde, on peut sommer les deux irradiations et prendre en compte la proportion de l'organe irradié.

Deux approches sont utilisées pour étudier les différents effets biologiques des rayonnements ionisants :

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 10/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

- l'épidémiologie, qui consiste à observer les effets sur des populations qui ont subi des irradiations d'origine naturelle ou artificielle (populations d'Hiroshima et Nagasaki, premiers radiologues et travailleurs dans les mines d'uranium...);
- l'expérimentation, qui consiste à observer, en particulier, les dégâts et perturbations engendrés par les rayonnements ionisants sur l'ADN (Acide Désoxyribonucléique : très longue molécule présente dans les cellules vivantes, support de l'information génétique).

3.2.1 Induction des effets déterministes (réactions tissulaires nocives)

Une forte irradiation par des rayonnements ionisants provoque des effets immédiats sur les organismes vivants comme, par exemple, des brûlures plus ou moins importantes : ces effets immédiats sont appelés effets déterministes, ils surviennent peu de temps après l'irradiation, de quelques heures à quelques mois.

L'induction de réactions tissulaires est généralement caractérisée par une dose seuil. Cette dose seuil peut varier d'un tissu à un autre. Les tissus les plus fragiles sont la peau, le poumon, les cellules formatrices du sang (la moelle osseuse), l'intestin et les organes sexuels. La raison de l'existence de cette dose seuil est que les dommages causés par les rayonnements (dysfonctionnement grave ou mort) à une population critique de cellules dans un tissu donné doivent être prolongés avant que la lésion ne puisse se manifester sous forme cliniquement significative. Au-dessus de la dose seuil, la gravité de la lésion, y compris l'altération de la capacité de Récupération des tissus, augmente avec la dose.

Même si les symptômes sont souvent précoces, ils peuvent aussi s'avérer tardifs ou tératogènes. Les réactions précoces des tissus aux rayonnements (allant de quelques jours à plusieurs semaines), lorsque la dose seuil a été dépassée, peuvent être du type inflammatoire en raison de la libération de facteurs cellulaires ; elles peuvent également survenir après la perte de cellules. Les réactions tissulaires tardives (de quelques mois à plusieurs années) peuvent être de type générique si elles apparaissent comme le résultat direct des dommages causés aux tissus atteints. En revanche, d'autres réactions tardives peuvent être de type indirect si elles surviennent à la suite de dommages cellulaires précoces [2].

Ce classement se rapporte aux doses efficaces reçues lors d'une exposition globale aigue. Il s'agit d'effets déterministes et non pas des effets stochastiques.

Figure 2 : Classement des doses de l'UNSCEAR (United Nation Scientific Committee on the Effects of Atomic Radiation)

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 11/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

3.2.2 Induction des effets stochastiques

Les expositions à des doses plus ou moins élevées de rayonnements ionisants peuvent avoir des effets à long terme sous la forme de cancers ou de leucémies, ou encore de maladies héréditaires. Ces effets se manifestent de façon aléatoire (que l'on ne peut pas prédire pour une personne donnée). Ils sont appelés effets stochastiques.

Contrairement à un effet déterministe, un effet stochastique n'est pas lié à un effet de seuil (typiquement, une limite d'exposition à un rayonnement ionisant qui, si elle était dépassée, induirait des effets connus et d'ampleur prévisible). Il ne peut lui être adjoint qu'une estimation statistique du « risque » de voir l'effet se manifester chez un patient. Il existe néanmoins un seuil de significativité (une limite au-delà de laquelle le risque est considéré comme significatif). Par ailleurs, il n'est pas possible de quantifier une dose pour laquelle un effet donné serait certain de se manifester. Par contre, sa probabilité d'apparition (et donc la fréquence d'apparition de ce risque) augmente selon la dose reçue, mais de façon aléatoire.

Dans le cas du cancer, des études épidémiologiques et expérimentales prouvent le risque des rayonnements, avec toutefois des incertitudes pour des doses de l'ordre de 100 mSv, voire moins. Dans le cas des maladies héréditaires, même s'il n'existe aucune preuve directe de risques des rayonnements pour les êtres humains, les observations expérimentales indiquent de façon convaincante que de tels risques pour les générations futures doivent être pris en compte dans le système de protection [2].

3.2.2.1 Risque de cancer

Depuis 1990, l'accumulation de données sur les cellules et les animaux relatives à l'induction de tumeurs par les rayonnements, a renforcé l'opinion selon laquelle les processus de réponse à la lésion de l'ADN au niveau d'une seule cellule sont très importants dans le développement d'un cancer après l'exposition aux rayonnements.

Les progrès sur la compréhension des effets des rayonnements sur l'ADN, tels que l'induction de formes complexes de cassures double-brin d'ADN, les problèmes rencontrés par les cellules pour réparer de façon correcte ces formes complexes de dommages causés à l'ADN, et l'apparition consécutive de mutations géniques/ chromosomiques, revêtent une importance particulière. Les avancées des connaissances en microdosimétrie, en ce qui concerne les dommages radio-induits causés à l'ADN, ont également contribué de façon significative à cette compréhension.

Bien qu'il existe des exceptions reconnues, la CIPR estime, à des fins de protection radiologique, que les connaissances sur les processus cellulaires fondamentaux, couplées aux données concernant la relation dose-effet, confortent l'opinion selon laquelle dans la plage des faibles doses, en dessous d'environ 100 mSv, il est scientifiquement plausible de supposer que l'incidence des effets cancérigènes ou héréditaires croît proportionnellement à l'augmentation de la dose équivalente reçue par les organes et tissus concernés.

Par conséquent, le système pratique de protection radiologique recommandé par la CIPR continuera d'être fondé sur l'hypothèse que, pour des doses inférieures à environ 100 mSv, un incrément de dose donné produira un incrément directement proportionnel de la probabilité d'induction d'effets cancérigènes ou héréditaires attribuables aux rayonnements [2].

3.2.2.2 Risque d'effets héréditaires

Il n'existe toujours pas de preuve directe que l'exposition de parents aux rayonnements conduise à un excès de maladies héréditaires dans leur descendance. Cependant, la CIPR estime qu'il existe des preuves irréfutables que les rayonnements provoquent des effets héréditaires chez les animaux utilisés dans les études expérimentales. Par conséquent, la CIPR continue par prudence à inclure le risque d'effets héréditaires dans son système de protection radiologique [2].

La figure suivante schématise les effets liés à l'exposition aux rayonnements ionisants.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 12/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

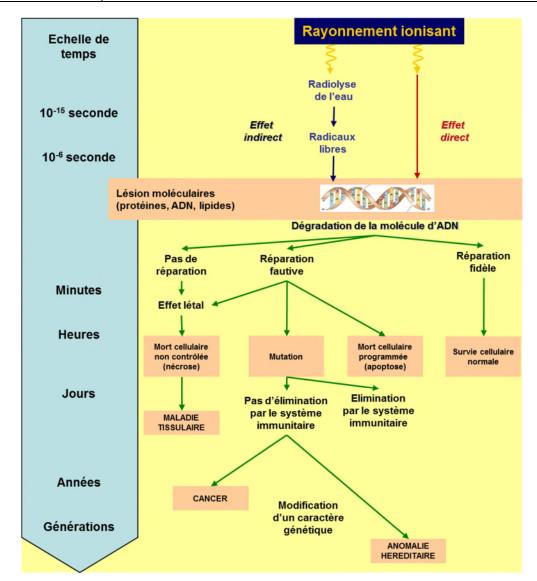


Figure 3 : Schématisation des effets liés à l'exposition aux rayonnements ionisants (source : INSTN)

3.2.2.3 Coefficients de risque nominal ajusté au détriment sanitaire

Les nouvelles informations sur les risques d'effets cancérigènes et d'effets héréditaires induits par les rayonnements ont été utilisées dans la modélisation du risque et le calcul de détriment sanitaire, afin d'estimer les coefficients de risque nominal moyenné sur le sexe.

Dans le tableau ci-après, les coefficients actuels (CIPR 103) ont été calculés d'une façon différente de celle de la Publication 60 (CIPR 60). Malgré les changements dans les données sur le risque de cancer et leur traitement, les coefficients de risque nominal actuels sont entièrement compatibles avec ceux présentés par la commission de la publication précédente (CIPR60). Par conséquent, la recommandation de la CIPR est que l'approximation du coefficient global de risque de décès de 5 % par sievert, sur lequel reposent actuellement les normes, continue de convenir aux besoins de la protection radiologique [2].

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 13/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

Population expecés	Publication CIPR 103		
Population exposée	Cancer	Effets héréditaires	Total
Ensemble	5,5	0,2	5,7
Adulte (travailleurs)	4,1	0,1	4,2

Tableau 4 : Coefficient de risque nominal ajusté au détriment (1.10⁻² Sv⁻¹) pour les effets stochastiques après exposition aux rayonnements à faible débit de dose (Source : IRSN, 2007 [2])

3.2.2.4 <u>Induction des maladies autres que le cancer</u>

Depuis 1990, des preuves concernant l'augmentation de la fréquence de maladies autres que le cancer chez certaines populations irradiées se sont accumulées. Les preuves statistiques les plus solides sur l'induction de ces effets non cancérigènes à des doses efficaces de l'ordre de 1 Sv proviennent de la dernière analyse de la mortalité après 1968 des survivants japonais aux bombes atomiques (*Preston et al, 2003*). Des preuves supplémentaires sur des effets non cancérigènes des rayonnements, bien qu'à des doses élevées, proviennent d'études sur des malades cancéreux traités par radiothérapie, mais ces données ne clarifient pas la question de l'existence d'un seuil de dose.

Tout en reconnaissant l'importance potentielle des observations sur les maladies autres que le cancer, la CIPR estime que les données disponibles ne permettent pas leur intégration dans l'estimation du détriment aux faibles doses de rayonnement, inférieures à 100 mSv environ [2].

3.2.2.5 Effets des rayonnements sur l'embryon et le fœtus

Les risques de réactions tissulaires et de malformations chez l'embryon et le fœtus irradiés ont fait l'objet d'une revue dans la Publication 90 (*CIPR*, 2003a). Sur cette base, les conclusions de la CIPR sur les risques in utero de lésions des tissus et de malformation à des doses inférieures à 100 mGy sont résumées ci-dessous :

- les nouvelles données confirment la sensibilité de l'embryon aux effets létaux (très rares aux doses inférieures à 100 mGy) de l'irradiation pendant la période de pré-implantation du développement ;
- concernant l'induction de malformations, la radiosensibilité in utero varie au cours de la gestation en fonction de l'âge. On estime que pour l'induction de malformations, il existe un véritable seuil de dose aux alentours de 100 mGy;
- la revue des données (CIPR 2003a) sur les survivants des bombardements atomiques relatives à l'induction d'un retard mental grave après une irradiation pendant la période prénatale la plus sensible (8^{ème} à 15^{ème} semaine après conception) est en faveur de l'existence d'un seuil de dose d'au minimum 300 mGy pour cet effet et par conséquent de l'absence de risque aux faibles doses;
- la CIPR considère que le risque de cancer sur la vie entière après une exposition in utero est similaire à celui qui existe après une irradiation dans la jeune enfance, c'est- à-dire au plus de l'ordre de trois fois celui de la population dans son ensemble.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 14/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	IQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

4 METHODOLOGIE D'EVALUATION DE L'IMPACT DOSIMETRIQUE

4.1 Schéma général

L'étude d'impact dosimétrique est réalisée en prenant en compte les rejets selon une approche raisonnablement majorante afin de maximaliser les effets étudiés. Les calculs sont basés sur les débits annuels rejetés, sous forme d'effluents gazeux et liquides et permettent d'évaluer l'impact dosimétrique associé sur les populations locales.

Le résultat final obtenu est exprimé en **sievert (Sv)**, représentant la dose efficace (indicateur d'impact) reçue par les populations étudiées du fait des rejets d'un projet ou d'une installation existante.

À partir de l'activité rejetée (rejets radiologiques) via les effluents liquides et atmosphériques et de leur dispersion dans le milieu, la radioactivité dans l'environnement est évaluée, et l'impact dosimétrique en est déduit en envisageant l'ensemble des voies par lesquelles la radioactivité peut atteindre l'homme : la voie atmosphérique (l'air), les dépôts (végétaux, terres), les eaux (eau potable, ruisseaux, rivières, fleuves, nappes souterraines), les aliments (lait, légumes, viandes, poissons...). Cette évaluation porte sur des groupes de population dits de référence les plus exposés localement à l'impact des rejets. Ces modèles d'évaluation sont disponibles dans des bases de données internationales telles que les données fournies par l'AIEA (Agence Internationale pour l'Energie Atomique).

Les étapes de cette méthodologie sont reprises dans les paragraphes qui suivent. Le schéma général retenu pour le calcul d'impact est présenté ci-après.

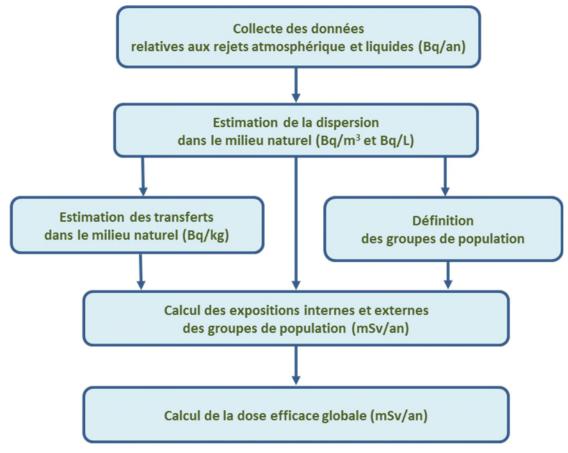


Figure 4 : Schéma général du calcul d'impact dosimétrique

Référence*: TRICASTIN-20-0	Orono Chimio E		- Enrichissement	
Version 2.0	PAGE 15/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

4.2 Estimation de la dispersion

4.2.1 Dispersion atmosphérique

La dispersion des radionucléides rejetés via le(s) émissaire(s) de rejets atmosphériques dans l'environnement est calculée à l'aide d'un modèle physique de dispersion. L'effet de la dispersion varie suivant les conditions météorologiques.

Le Coefficient de Transfert Atmosphérique (CTA), pour une condition météorologique et un point donné, est le rapport entre la concentration intégrée en ce point et la quantité émise.

Le Débit de Dépôt Total (DDT) est la quantité déposée par unité de surface et par unité de temps. Il traduit l'appauvrissement (dilution) du panache en fonction des données météorologiques.

Ces deux valeurs sont nécessaires pour déterminer l'impact sur la population étudiée. Elles sont déterminées par le module de calcul COTRAM (inclus dans le logiciel COMODORE), à partir des données météorologiques locales. Ce logiciel réalise les calculs à partir des conditions de transfert (vitesse et direction du vent, type de stabilité atmosphérique) en prenant en compte la hauteur de rejet. Il est valable pour des aérosols et des gaz rares. Il réalise le calcul pour plusieurs points de rejets à un même point cible.

4.2.2 Dispersion liquide

Non concerné dans le cadre de cette étude, le LEA n'étant pas à l'origine de rejets liquides.

4.3 Calcul d'exposition et mécanismes de transfert vers l'homme

L'homme peut être exposé aux radionucléides par voie externe (exposition externe) et par voie interne (ingestion et inhalation).

Dans le cas des **expositions externes**, les coefficients de dose ne dépendent pas du métabolisme des personnes : en conséquence, ils ne varient pas en fonction de l'âge et une valeur unique est utilisée pour chaque radionucléide. En revanche, ces coefficients de dose externe sont fonction de la nature de la source et de la situation dans laquelle se trouve la personne : exposition au panache et à un dépôt au sol pour le domaine terrestre.

Dans le cas des **expositions internes**, des coefficients de dose spécifiques de chaque radionucléide fournissent la dose efficace engagée pour chaque becquerel incorporé, que ce soit par inhalation ou par ingestion. Ces coefficients sont exprimés en sievert par becquerel (Sv/Bq).

Les rejets atmosphériques d'une installation se dispersent dans l'environnement. Le transfert vers l'homme intervient via les différents compartiments de l'écosystème comme le montre le schéma conceptuel de la figure suivante :

- le milieu atmosphérique ;
- le milieu terrestre ;
- le milieu aquatique (non concerné dans le cadre de cette étude).

Référence*: TRICASTIN-20-002591 Orano Chimie		- Enrichissement		
Version 2.0	PAGE 16/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

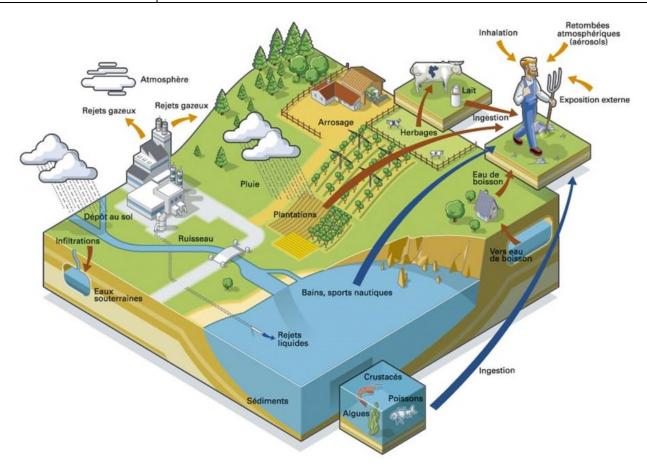


Figure 5 : Représentation schématique des différentes voies d'exposition potentielles de l'homme

La modélisation de la dispersion des radionucléides contenus dans les rejets et de leur devenir dans l'environnement aboutit à un calcul de la contamination de l'air, des sols et plus globalement de l'ensemble de la chaîne alimentaire.

À partir de ces valeurs, des scenarios d'exposition retenus et des habitudes alimentaires locales, des calculs d'expositions externes et internes sont menés pour les populations les plus exposées. Ces expositions sont calculées à l'aide de coefficients de dose pour chaque radionucléide, exprimés en Sievert par Becquerel (Sv/Bq), pour l'exposition interne par ingestion et par inhalation et pour l'exposition externe.

La somme des quatre voies principales d'exposition retenues constitue la dose efficace globale évaluée pour les populations étudiées :

- exposition externe due au panache;
- exposition externe due au dépôt ;
- exposition interne par inhalation;
- exposition interne par ingestion (qui peut avoir plusieurs origines : consommation de végétaux et consommation de produits d'origine animale provenant d'animaux ayant ingéré des végétaux...).

Référence*: TRICASTIN-20-002591 Orano Chimie		- Enrichissement		
Version 2.0	PAGE 17/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

4.3.1 <u>Transfert des radionucléides contenus dans les rejets atmosphériques</u>

La dispersion des radionucléides dans l'atmosphère entraîne une **exposition externe directe** et une **exposition interne par inhalation**.

De plus, le panache est partiellement lavé par les pluies, les particules se déposent au sol et sur la végétation. Les dépôts sur la végétation et les sols entrainent un transfert par absorption foliaire et racinaire.

L'impact sur l'homme est évalué via **l'exposition interne par ingestion** des aliments contenant des éléments assimilables par le sol et la végétation. L'atteinte à l'homme par ingestion tient compte également de la consommation de végétaux par les animaux.

Le dépôt au sol provoque également une exposition externe.

Par conséquent, les voies d'exposition possibles aux rejets radiologiques atmosphériques sont les suivantes :

- l'exposition interne par inhalation ;
- l'exposition interne par ingestion de végétaux, de produits d'origine animale, de produits dérivés...;
- l'exposition interne par ingestion de sols par inadvertance;
- l'exposition externe due au panache ;
- l'exposition externe due aux dépôts.

4.3.2 <u>Transfert des radionucléides contenus dans les rejets liquides</u>

Non concerné dans le cadre de cette étude.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 18/53	Installation :	Type de document*: NT	orano
Ancien Code :	•	Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

5 LOGICIEL DE MODELISATION DE L'IMPACT DOSIMETRIQUE

Le groupe Orano s'est équipé depuis 2005 d'un logiciel spécifique de calcul d'impact dosimétrique. Le choix s'est porté sur un logiciel développé initialement par le Groupe Radioécologique Nord-Cotentin en charge du suivi du site de La Hague. Après adaptation, cet outil (COMODORE) est maintenant utilisé par les sites d'Orano, notamment ceux du Tricastin et de Malvési.

Ce logiciel est une synthèse de trois logiciels validés par l'Institut de Radioprotection et de Sûreté Nucléaire (IRSN) : ACADIE, COTRAM et AQUAREJ. Il est destiné au calcul d'impact dosimétrique de rejets chroniques (en fonctionnement normal d'un projet ou d'une installation existante) de produits radioactifs, en prenant en compte les transferts de contamination dans l'environnement, ainsi que les transferts dans la chaîne alimentaire jusqu'à l'homme.

Ce logiciel a été mis à jour en 2012 avec des données bibliographiques actualisées.

L'ensemble des données d'entrée intrinsèques au logiciel COMODORE (paramètres de transfert radioécologiques, etc.) nécessaires au calcul d'impact dosimétrique est présenté en détail dans les notices du logiciel :

- notice d'évolution des paramètres de transfert du logiciel COMODORE version 2012 [3] ;
- notice théorique du logiciel COMODORE version 2012 [4].

Référence*: TRICASTIN-20-0	-20-002591 Orano Chimie - Enrichissement			
Version 2.0	PAGE 19/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

6 DONNEES D'ENTREE LIEES A L'INSTALLATION

6.1 Terme source

6.1.1 Estimation des rejets atmosphériques

Les radionucléides rejetés à l'atmosphère constituent le terme source. Ce terme source sert de donnée d'entrée au calcul d'impact. Il précise pour chaque radionucléide les quantités rejetées par an. Les rejets du LEA sont effectués via une cheminée d'une hauteur de 10 m.

La méthodologie de détermination du terme source est présentée de manière détaillée en Annexe 1.

D'une manière générale, le terme source est construit à partir des valeurs annuelles maximales rejetées sur la période 2012-2020, majorées de 50 %. Dans le détail, les hypothèses suivantes sont retenues :

- pour le ⁸⁵Kr, ¹³³Xe, ¹²⁷Xe et ¹⁴C, la valeur annuelle maximale estimée, pour la période 2012-2020, est retenue :
- pour l'125 l, 131 l et 3H, la valeur annuelle maximale mesurée sur la période 2012-2020 est retenue ;
- pour les radionucléides restants, l'activité est déterminée, selon que ces derniers sont émetteurs alpha ou bêta, à partir :
 - o de l'activité annuelle maximale, en alpha ou en bêta, sur la période 2012-2020 ;
 - o la part maximale de chaque radionucléide dans la production annuelle sur la période 2012-2020.

L'ensemble des valeurs maximales ainsi obtenues a été majoré de 50 % afin de couvrir des émissions potentiellement plus élevées que les maximums historiques observés.

Pour le ⁵⁷Co et le ¹⁰⁹Cd, l'activité « Fluo X » a été prise en compte. Cette activité n'ayant pas encore démarrée à la date de rédaction de cette étude, les activités ont été estimées de manière majorante. L'activité rejetée (⁵⁷Co et ¹⁰⁹Cd) est estimée sur la base des rejets réels actuels rapportée à l'activité mise en œuvre.

Le terme source ainsi obtenu est présenté dans le tableau suivant.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 20/53	Installation :	Type de document*: NT	orano
Ancien Code : Objet / Titre* : EVALUATION I		DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX	
Référence RGF :		REJETS DU LEA		

Radionucléides	Rejets (Bq/an)	Radionucléides	Rejets (Bq/an)
Kr85	9,05.10 ⁹	Cr51	1,52.10 ³
Xe133	4,59.10 ⁷	Cs134	6,65.10 ²
Xe127	4,57.10 ⁷	Cs137+Ba137m	7,81.10 ³
C14	5,07.10 ⁴	Eu152	$2,94.10^3$
Co57	1,58.10 ⁶	Fe55	9,90.10 ¹
l125	1,11.10 ⁶	Fe59	1,48.10 ³
l131	1,13.10 ⁵	Mn54	$5,58.10^2$
H3	1,71.108	Na22	$3,03.10^2$
Am241	8,43.10 ³	Ni63	4,10.10 ¹
Cm244	3,19.10 ²	P32	5,25.10 ¹
Np237	3,35.10 ²	Pm147	$2,43.10^{1}$
Pu238	9,89.10 ¹	S35	9,96
Pu239	6,64.10 ²	Sn113	9,71.10 ²
U233	1,33	Sr85	1,58.10 ³
Ag110m	1,91.10 ³	Sr89	1,02.10 ²
Ba133	5,72.10 ³	Sr90	3,41.10 ³
Ca45	3,37.10 ¹	Tc99	1,00.10 ³
Cd109	1,15.10 ⁷	Tl204	2,84.10 ⁻¹
Ce139	2,44.10 ³	Y88	1,49.10 ³
Cl36	4,49.10 ¹	Zn65	9,40.10 ²
Co60	1,60.10 ³		

Tableau 5 : Terme source atmosphérique du LEA

6.1.2 Prise en compte des radionucléides rejetés dans le logiciel COMODORE

Certains radionucléides présents dans le terme source atmosphérique du LEA ne sont pas disponibles dans la base de données du logiciel COMODORE. Il s'agit du ¹²⁷Xe, ¹³³Ba, ⁴⁵Ca, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁹Fe, ³²P, ³⁵S, ¹¹³Sn, ⁸⁵Sr, ²⁰⁴TI et ⁸⁸Y.

Le ¹²⁷Xe étant un gaz, la voie d'exposition par ingestion n'est pas retenue. Ainsi, ce radionucléide peut facilement être ajouté au logiciel COMODORE. De même, concernant le ¹⁰⁹Cd, ce radionucléide a été ajouté au logiciel COMODRE dans le cadre de l'étude des incidences du projet Fluo X. Ce radionucléide peut donc être pris en compte. Les données utilisées sont issues de l'arrêté du 1^{er} septembre 2003 [5] pour les coefficients de dose efficace pour l'exposition interne par inhalation et du Federal Guidance Report N°12 [6] pour les coefficients de dose efficace pour l'exposition externe.

Les autres radionucléides manquants sont tous des émetteurs bêta. Pour ces radionucléides, la prise en compte de la voie d'exposition par ingestion nécessite des paramètres supplémentaires afin de caractériser les transferts dans la chaîne alimentaire. En l'absence de certains de ces paramètres, il a été décidé d'associer l'activité rejetée par ces radionucléides à un radionucléide considéré comme « plus pénalisant » en termes d'impact dosimétrique.

Pour déterminer ce radionucléide, une première modélisation a été effectuée, au niveau du groupe de référence « Centrale biomasse (P4) » (voir § 7), avec uniquement les radionucléides disponibles par défaut dans l'outil COMODORE afin de déterminer les doses reçues par l'adulte. Un ratio dose / activité rejetée a été calculé pour chaque radionucléide. Parmi les émetteurs bêta, le radionucléide présentant le ratio le plus important est le ¹³⁴Cs : il a été considéré comme le « plus pénalisant ». Par ailleurs, afin de ne pas minimiser les effets, il a également été vérifié que les coefficients de dose efficace des émetteurs bêta non disponibles dans la base de données du logiciel COMODORE étaient bien inférieurs à ceux du ¹³⁴Cs.

Dans le cadre des modélisations, les activités des radionucléides non disponibles ont été ajoutées à l'activité rejetée par le ¹³⁴Cs.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 21/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

Le terme source ainsi obtenu est présenté dans le tableau suivant.

Radionucléides	Rejets (Bq/an)	Radionucléides	Rejets (Bq/an)
Kr85	9,05.10 ⁹	Cl36	4,49.10 ¹
Xe133	4,59.10 ⁷	Co60	1,60.10 ³
Xe127	4,57.10 ⁷	Cr51	1,52.10 ³
C14	5,07.104	Cs134*	1,44.10 ⁴
Co57	1,58.10 ⁶	Cs137+Ba137m	7,81.10 ³
I125	1,11.10 ⁶	Eu152	2,94.10 ³
I131	1,13.10 ⁵	Fe55	9,90.10 ¹
H3	1,71.108	Mn54	5,58.10 ²
Am241	8,43.10 ³	Na22	3,03.10 ²
Cm244	3,19.10 ²	Ni63	4,10.10 ¹
Np237	3,35.10 ²	Pm147	2,43.10 ¹
Pu238	9,89.10 ¹	Sr89	1,02.10 ²
Pu239	6,64.10 ²	Sr90	3,41.10 ³
U233	1,33	Tc99	1,00.10 ³
Ag110m	1,91.10 ³	Zn65	7,61.10 ²
Cd109	1,15.10 ⁷		

^{*} L'activité rejetée en ¹³⁴Cs correspond à l'activité de ce radionucléide ainsi que l'activité des émetteurs bêta non disponibles dans la base de données du logiciel COMODORE, à savoir le ¹³³Ba, ⁴⁵Ca, ¹³⁹Ce, ⁵⁹Fe, ³²P, ³⁵S, ¹¹³Sn, ⁸⁵Sr, ²⁰⁴Tl et ⁸⁸Y.

Tableau 6 : Terme source atmosphérique renseigné dans le logiciel COMODORE

6.1.3 Estimation des rejets liquides

Le LEA n'est pas à l'origine de rejets d'effluent liquide dans le milieu naturel.

6.2 Rations alimentaires et taux d'autoconsommation

Les valeurs concernant les rations alimentaires et les taux d'autoconsommation considérés proviennent de l'enquête alimentaire de Pierrelatte réalisée par Orano et l'IRSN [7]. Cette enquête a été réalisée sur un groupe de personnes sélectionné précisément, reflétant des habitudes « rurales » avec un fort taux d'autoconsommation. Cependant, il ne constitue pas le reflet du mode de vie de l'ensemble des habitants de la région. En conséquence, cela constitue une hypothèse majorante.

Les rations alimentaires par classe d'âge et type d'aliments utilisées dans l'étude ainsi que les taux d'autoconsommation sont indiqués dans le tableau suivant.

Le taux d'autoconsommation évalue la proportion d'aliments autoconsommés (produits et consommés localement) par rapport à la quantité totale d'aliments consommés.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 22/53	Installation :	Type de document*: NT	orano
Ancien Code :	-	Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

kg/an ou l/an	Enfant 1-2 ans	Enfant 2-7 ans	Enfant 7-12 ans	Adulte	Autoconsommation (%)
Légumes racines	16,1	63,2	82,6	80,7	77
Fruits	21,3	59,2	67,0	93,2	64
Légumes fruits	25,2	52,7	59,7	83,0	80
Légumes feuilles	16,1	35,1	38,3	73,0	85
Porc	9,5	15,3	20,1	22,4	1
Volaille	6,6	19,4	35,2	29,9	63
Œuf	4,8	6,2	8,9	8,1	59
Produits laitiers	157	54,2	50,0	60,3	1
Vin	0	0	0	50,3	78
Eau de boisson	272,8	272,8	272,8	483,6	73
Poissons de rivière	6,2	13,6	16,4	19,6	18

Tableau 7: Rations alimentaires (source: IRSN, 2010)

6.3 Ingestion de terre par inadvertance

Le tableau suivant indique les quantités retenues pour l'ingestion de terre par inadvertance. Pour les enfants, la valeur retenue est le percentile P50 issu de l'étude de Stanek (2001) (étude présentée lors des 2èmes rencontres nationales de la recherche sur les sites et sols pollués organisées par l'ADEME). Pour les adultes, il s'agit d'une valeur standard.

Classe d'âge	Enfant 1-2 ans	Enfant 2-7 ans	Enfant 7-12 ans	Adulte
Ingestion de terre (kg/an)	8,88.10 ⁻³	8,88.10-3	8,88.10-3	1,83.10-2

Tableau 8 : Ingestion de terre par inadvertance

6.4 Scénarios d'exposition retenus

Dans le cadre du fonctionnement du LEA, l'ensemble des voies d'exposition suivantes sont prises en compte :

- exposition externe liée au panache ;
- exposition externe liée au dépôt ;
- exposition interne par inhalation;
- exposition interne par ingestion de sols par inadvertance (les sols étant exposés aux dépôts atmosphériques);
- exposition interne par ingestion de végétaux / produits maraîchers (également exposés aux dépôts atmosphériques) ;
- exposition interne par ingestion de produits animaux et dérivés exposés aux rejets atmosphériques.

Pour mémoire, le LEA n'étant pas à l'origine de rejets liquides, aucun scénario d'exposition associé à ce type de rejets n'est pris en compte.

6.5 Durée de fonctionnement

La durée de fonctionnement des installations du LEA est prise égale à 30 ans.

Référence*: TRICASTIN-20-0	02591	Orano Chimie	Orano Chimie - Enrichissement					
Version 2.0	PAGE 23/53	Installation :	Type de document*: NT	orano				
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX				
Référence RGF :		REJETS DU LEA						

7 SELECTION DES GROUPES DE POPULATION LES PLUS EXPOSES

7.1 Contexte

Dans le cadre de cette étude, l'impact dosimétrique sur les populations environnantes est évalué. Il est donc nécessaire de définir les groupes de population de référence à retenir pour les modélisations à l'aide du logiciel COMODORE.

D'après la directive 96/29 Euratom du 13 mai 1996, un groupe de référence est défini comme un groupe d'individus dont l'exposition à une source est uniforme et représentative de celle des individus qui, parmi la population, sont plus particulièrement exposés à ladite source.

7.2 Méthodologie de la sélection des groupes de population

Les groupes de population spécifiques à l'installation sont définis suivant la méthodologie suivante :

- Etape 1 : recensement des populations situées à proximité de la plateforme Orano du Tricastin : une cinquantaine de groupes de population a été inventoriée ;
- Etape 2 : sélection d'une dizaine de groupes de population les plus exposés aux rejets du LEA.

Les groupes de population susceptibles d'être les plus exposés sont identifiés sur la base des conditions météorologiques et de la localisation des émissaires de rejets atmosphériques par rapport à ces groupes.

7.2.1 Etape 1 : recensement des populations situées à proximité de la plateforme Orano du Tricastin

La base de données commune recensant tous les groupes de populations résidant (de manière isolée ou groupée) ou travaillant autour du site du Tricastin (plateforme Orano et CNPE d'EDF), a été établie par Orano en 2010 et mise à jour en 2014. Elle identifie 53 groupes de population résidentiels (R) ou professionnels (P) situés à proximité immédiate de la plateforme Orano du Tricastin, localisés et listés sur la figure et le tableau ciaprès.

Référence*: TRICASTIN-20-0	02591	Orano Chimie	Orano Chimie - Enrichissement					
Version 2.0	PAGE 24/53	Installation :	Type de document*: NT	orano				
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX				
Référence RGF :		REJETS DU LEA						

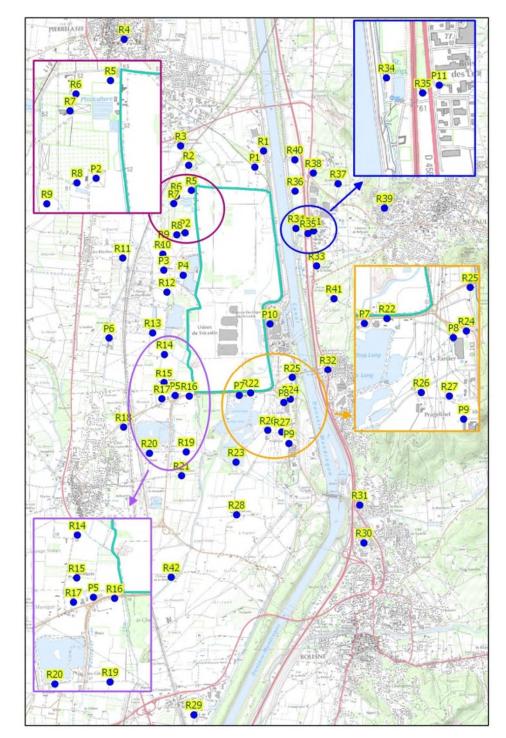


Figure 6 : Localisation des populations au voisinage de la plateforme Orano du Tricastin

Référence*: TRICASTIN-20-002591			Orano Chimie	Orano Chimie - Enrichissement						
	Version 2.0	PAGE 25/53	Installation :	Type de document*: NT	orano					
	Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX					
	Référence RGF :		REJETS DU LEA							

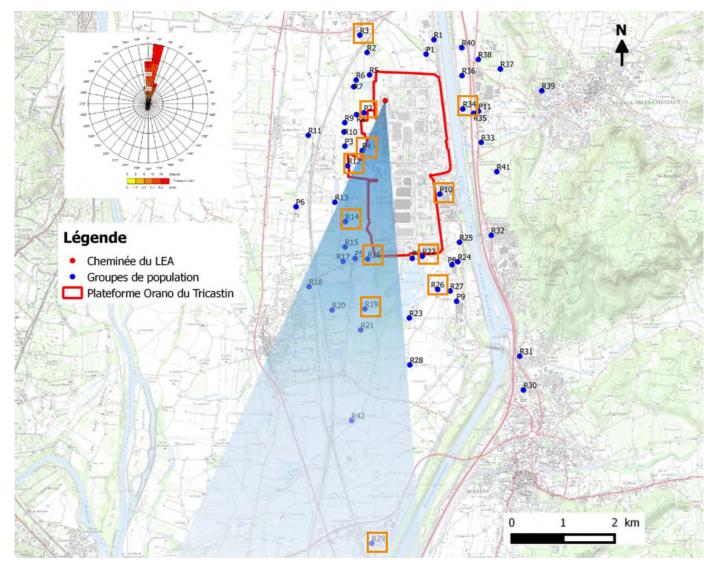
Nom	Usage	Référence
Habitation Nord Est du site	Résidentiel	R1
Locaux SOGEDEC	Professionnel	P1
Habitation Nord-Ouest du site	Résidentiel	R2
Faveyrolles	Résidentiel	R3
Mairie de Pierrelatte	Résidentiel	R4
Habitation Nord-Ouest du site	Résidentiel	R5
Habitation Nord-Ouest du site	Résidentiel	R6
Habitation (serres) Nord-Ouest du site	Résidentiel / Professionnel	R7
Serres à l'Ouest du site	Professionnel	P2
Habitation Ouest du site	Résidentiel	R8
Habitation Ouest du site	Résidentiel	R9
Habitation Ouest du site	Résidentiel	R10
Serres de Pierrelatte	Professionnel	P3
Centrale Biomasse	Professionnel	P4
Habitation Les Blaches	Résidentiel	R11
Habitation Ouest du site	Résidentiel	R12
Habitation Sud-Ouest du site	Résidentiel	R13
Habitation Sud-Ouest du site	Résidentiel	R14
Habitation Sainte-Marie	Résidentiel	R15
Habitation Sud-Ouest du site	Résidentiel	R16
Locaux Contrôle Technique	Professionnel	P5
Habitation Massigas	Résidentiel	R17
Serres Sud-Ouest du site	Professionnel	P6
Habitation Parc des Cantarelles	Résidentiel	R18
Habitation Les Girardes	Résidentiel	R19
Habitation Faraud	Résidentiel	R20
Habitation Les Contras	Résidentiel	R21
Habitation Clos de Bonnot	Résidentiel	R22
Entreprise Clos de Bonnot	Professionnel	P7
Habitation Sud du Bartas	Résidentiel	R23
Habitation Sud Est du site	Résidentiel	R24
Habitation Sud Est du site	Résidentiel	R25
Habitation Les Près Guérinés	Résidentiel	R26
Entreprise Tardier Nord	Professionnel	P8
Entreprise Tardier Sud	Professionnel	P9

Formulaire TRICASTIN-11-000516 v. 14.0

Référence*: TRICASTIN-20-0	02591	Orano Chimie	Orano Chimie - Enrichissement					
Version 2.0	PAGE 26/53	Installation :	Type de document*: NT	orano				
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	IQUE ASSOCIE AUX				
Référence RGF :		REJETS DU LEA						

Nom	Usage	Référence		
Prés Guérinés (PA9/RA9)	Résidentiel	R27		
Habitation Pont de Coucaou	Résidentiel	R28		
Bollène la Croisière (RA10/PA10)	Résidentiel	R29		
Habitation cité Saint-Pierre de Bollène	Résidentiel	R30		
Habitation Bollène Saint-Pierre de Sénos	Résidentiel	R31		
Habitation Bollène Ecluse	Résidentiel	R32		
Entreprise EDF Tricastin	Professionnel	P10		
Habitation Château de la Robine	Résidentiel	R33		
Entreprise Bois des Lots	Professionnel	P11		
Habitation Est du site	Résidentiel	R34		
Habitation Est du site	Résidentiel	R35		
Habitation Nord Est du site	Résidentiel	R36		
Habitation La Décelle	Résidentiel	R37		
Habitation Cité 3	Résidentiel	R38		
Habitation Plein Soleil	Résidentiel	R39		
Habitation Nord Est du site	Résidentiel	R40		
Habitation Les Lônes Est du site	Résidentiel	R41		
Habitation Château de la Bâtie	Résidentiel	R42		

Tableau 9 : Recensement des populations au voisinage de la plateforme Orano du Tricastin


7.2.2 <u>Etape 2 : sélection des groupes de population les plus exposés aux rejets</u>

Les groupes de population les plus exposés aux rejets du LEA sont sélectionnés sur la base de :

- la localisation de la cheminée du LEA;
- la localisation des groupes aux alentours de la plateforme Orano du Tricastin;
- la rose des vents.

La superposition de ces informations permet d'identifier les groupes de population potentiellement les plus exposés aux activités des installations du LEA, comme le montre la figure de la page suivante (le cône bleu représente la zone sous les vents dominants).

Référence*: TRICASTIN-20-0	02591	Orano Chimie	Orano Chimie - Enrichissement					
Version 2.0	PAGE 27/53	Installation :	Type de document*: NT	orano				
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX				
Référence RGF :		REJETS DU LEA						

Encadrés orange : groupes sélectionnés

Figure 7 : Sélection et localisation des groupes de population

La majorité des groupes de population retenus, est située à l'ouest et au sud de la plateforme, sous les vents dominants. L'ensemble des directions cardinales est toutefois couvert par la sélection effectuée. Les groupes dits « historiques » (Faveyrolles, Clos de Bonnot, Prés Guérinés et Bollène la Croisière) sont également retenus.

Les 12 groupes de population retenus (de type résidentiel ou professionnel) encadrés en orange sur la figure précédente sont synthétisés dans le tableau suivant.

Référence*: TRICASTIN-20-0	02591	Orano Chimie	- Enrichissement	
Version 2.0	PAGE 28/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

Référence	Nom	Туре
R3	Faveyrolles	
R12	Habitation ouest du site	
R14	Habitation Sud-Ouest du site	
R16	Habitation Sud-Ouest du site	Résidentiel
R19 Habitation Les Girardes		Residentier
R22	Habitation Clos de Bonnot	
R26	Les Prés Guérinés	
R29	Bollène la Croisière	
P1	Locaux SOGEDEC	
P2	Serres à l'Ouest du site	Drofossiannal
P4	Centrale Biomasse	Professionnel
P10	Entreprise EDF Tricastin	

Tableau 10 : Liste des groupes de population retenus dans le cadre de cette étude

Dans la suite de l'évaluation, en première approche majorante, les groupes professionnels sont considérés de la même manière que les groupes résidentiels. En effet, même si les groupes de population professionnels sont moins exposés que les groupes résidentiels (% de temps soumis à l'inhalation et ingestion alimentaire de produits locaux plus faibles), les mêmes paramètres sont retenus pour les calculs de dose efficace pour ces deux types de groupe de population (100 % de temps soumis à l'inhalation pour la dose efficace par inhalation et prise en compte des rations alimentaires pour la dose efficace par ingestion).

Le calcul de dose est effectué pour l'ensemble des groupes sélectionnés, à l'aide du logiciel COMODORE, afin d'identifier le groupe de population le plus exposé.

Référence*: TRICASTIN-20-0	02591	Orano Chimie	Orano Chimie - Enrichissement					
Version 2.0	PAGE 29/53	Installation :	Type de document*: NT	orano				
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX				
Référence RGF :		REJETS DU LEA						

8 DONNEES D'ENTREE DES CALCULS DE DISPERSION

8.1 Calcul de dispersion dans le milieu atmosphérique

Préalablement au calcul d'impact dosimétrique, un calcul de dispersion des rejets radiologiques dans le milieu atmosphérique est réalisé à l'aide du module de calcul COTRAM inclus dans le logiciel COMODORE.

Les hypothèses suivantes sont considérées comme données d'entrée des évaluations sur la santé pour les rejets atmosphériques radiologiques.

8.1.1 <u>Données météorologiques</u>

Les données météorologiques retenues pour la modélisation de la dispersion atmosphérique sont spécifiques à la zone d'étude. Elles proviennent de la station météorologique « La Piboulette » de la plateforme Orano du Tricastin. Les données moyennes sur la période 2018-2020 sont utilisées dans le cadre de cette étude.

La figure suivante présente la rose des vents construite sur la base de ces données.

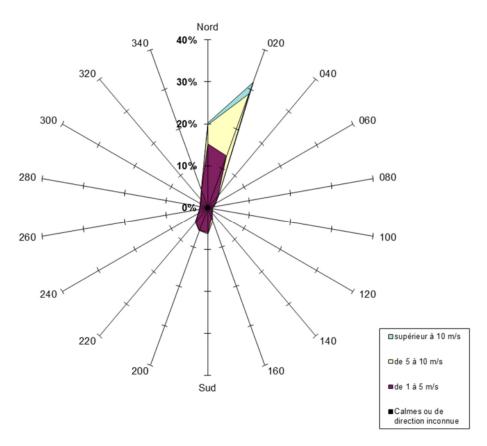


Figure 8 : Rose des vents à 10 m sur la période de 2018 à 2020 (station météorologique du Tricastin, « La Piboulette »)

Référence*: TRICASTIN-20-0	02591	Orano Chimie	Orano Chimie - Enrichissement					
Version 2.0	PAGE 30/53	Installation :	Type de document*: NT	orano				
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX				
Référence RGF :		REJETS DU LEA						

Les tableaux ci-après présentent les valeurs en fonction des classes de stabilité atmosphérique et de précipitations.

Trois conditions météorologiques particulières sont retenues pour le calcul de dispersion dans le milieu atmosphérique :

- atmosphère stable avec et sans précipitation (confondues) : Tableau 11 ;
- atmosphère neutre (ou instable) avec précipitations : Tableau 12 ;
- atmosphère neutre (ou instable) sans précipitation : Tableau 13.

CRITERES DE SE	LECTIC	N																		NOMBE	RES D'OBSERVATIONS
. Classes de stal	bilité:		9	Stable																. Total su	r la période = 156989
. Classes de pré	cipitat	ions:	(Confond	dues															. Partiel po	ur le tableau = 70748
Période : du 201	80101	au 202	01231																		
FREQUENCE PO	UR 100	00 DES	VITESSE	S DE V	ENT EN	FONCT	ION DE	LA DIR	ECTION	I - NIVE	AU 10	m -									
Degrés		360	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340 Dir	rection inconnue	Toutes directions
m/s																					
	14		0.2																		0.2
	13		0.1																		0.1
	12	0.1	0.2																		0.3
	11	0.1	0.2						0.1												0.4
	10	0.1	0.4						0.1												0.6
	9	0.5	1.1						0.1	0.1											1.8
	8	1	2.6						0.1	0.2											3.9
	7	2.4	5.2	0.1						0.1											7.8
	6	5.5	8	0.2				0.1	0.1	0.2	0.1								0.1		14.3
	5	11.1	11.1	0.4				0.1	0.1	0.2	0.3	0.1	0.1					0.1	0.7		24.3
	4	19.2	13.1	1.1	0.1			0.1	0.2	0.3	0.7	0.3	0.2	0.1	0.1	0.1		0.2	2.1		37.9
	3	24.9	13.5	2.1	0.4	0.1	0.1	0.2	0.3	0.7	2.2	1.2	1.2	0.4	0.2	0.2	0.3	0.8	5		53.8
	2	19.9	14.7	5.1	1.9	0.7	0.3	0.6	0.9	1.4	6.1	6.3	4.5	1.8	1	1.1	1.7	2.8	6.5		77.3
Calme	1	15	16.5	12.1	10.8	6.9	2.9	3.7	3.2	3.4	6.6	8.7	6.7	6.2	5.5	5.6	7	8.7	10.7	87	.6 87.6
Carrie																				87	.0 87.0
Toutes vitesses		99.8	86.9	21.1	13.2	7.7	3.3	4.8	5.2	6.6	16	16.6	12.7	8.5	6.8	7	9	12.6	25.1	87	.6 450.5
Vitesses moyen	nes	3.3	3.7	1.7	1.2	1.1	6.1	1.5	2.2	2.3	1.9	1.6	1.6	1.3	1.3	1.3	1.3	1.4	2		0 2.1

Tableau 11 : Fréquence en origine des vents en fonction des différents secteurs de la rose des vents pour les conditions stables (2018 à 2020)

Référence*: TRICASTIN-20-002591		Orano Chimie		
Version 2.0	PAGE 31/53	Installation :	Type de document*: NT	orano
Ancien Code :		· ·	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

CRITERES DE SE	LECTIO	N																	NOI	MBRES	D'OBSERVATIONS
. Classes de sta	bilité:		Ir	nstable															. Tota	al sur la	période = 156989
. Classes de pré	cipitati	ons:	С	ui															. Parti	iel pou	r le tableau = 2262
Période : du 20	180101	au 2020)1231																		
FREQUENCE PO	UR 100	0 DES V	'ITESSE	S DE VE	NT EN	FONCT	ION DE	LA DIR	ECTION	I - NIVE	AU 10 ı	n -									
Degrés		360	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340 Direction inconn	nue	Toutes directions
m/s																					
	14																				0
	13																				0
	12																				0
	11		0.1																		0.1
	10		0.1							0.1											0.2
	9	0.1	0.2							0.1											0.4
	8	0.2	0.3							0.1											0.6
	7	0.2	0.3							0.1											0.6
	6	0.3	0.4							0.1	0.1										0.9
	5	0.4	0.3						0.1	0.1	0.1										1
	4	0.6	0.4	0.1					0.1	0.1	0.1				0.4				0.1		1.5
	3	0.5	0.3	0.1	0.4				0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.4		0.1	0.2		2.2
	2	0.5	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.4	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.3		3.1 2.7
Calme	1	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.2	0.1	0.1	0.2	0.1	0.1	0.2	0.8	0.8
Carrie																				0.8	0.8
Toutes vitesses		3.1	2.9	0.4	0.2	0.2	0.1	0.2	0.6	1.2	1.1	0.6	0.5	0.3	0.3	0.3	0.2	0.3	0.8	0.8	14.1
Vitesses moyer	ines	4.2	5.4	2.5	1.5	1.5	0.1	1.5	3	5	2.8	1.7	1.8	2	2	1.3	1.5	2	2.3	0	3.4

Tableau 12 : Fréquence en origine des vents en fonction des différents secteurs de la rose des vents pour les conditions instables en présence de précipitations (2018 à 2020)

CRITERES DE SELEC	CTIO	N																	NC)MBRE	S D'OBSERVATIONS
. Classes de stabili	té:		- 1	nstable						. Total sur la période = 156989											
. Classes de précipi	itati	ons:	1	Non															. Parti	el pour	le tableau = 83975
Période : du 20180	101	au 202	01231																		
FREQUENCE POUR	100	0 DES	VITESSE	S DE VI	ENT EN	FONCT	ION DE	LA DIR	ECTION	N - NIVE	AU 10	m -									
Degrés		360	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340 Direction inco	onnue	Toutes directions
m/s																					
1	14	8.0	5.7																		6.5
1	13	8.0	4.2																		ţ
1	12	1.2	7.1																		8.3
1	11	1.9	11.9	0.1					0.1	0.2											14.2
1	10	3.1	18.4	0.2					0.1	0.4											22.2
	9	4.9	26.8	0.4					0.1	0.7	0.1		0.1						0.1		33.2
	8	7.4	31.9	0.8					0.2	1	0.2	0.1	0.1					0.1	0.1		41.9
	7	9.1	33.8	1.1					0.1	1.4	0.5	0.2	0.1					0.1	0.2		46.6
	6	11.3	28.3	1.5					0.2	1.6	1.2	0.4	0.4					0.1	0.3		45.3
	5	12.8	22.2	2.1				0.1	0.3	1.9	3.4	2	1.9	0.3	0.1	0.1	0.1	0.1	0.5		47.9
	4	14.3	13.5	2.5	0.1			0.1	0.5	2.8	7.3	7	4.1	0.7	0.1	0.2	0.2	0.2	1.4		55
	3	13.1	8.7	2	0.3	0.1	0.1	0.2	1.3	4	12	11.1	6.8	1.8	0.5	0.3	0.3	0.5	3.1		66.2
	2	8.9	6.6	2.7	0.9	0.5	0.3	0.8	1.4	4.5	11.1	9.6	7.4	4.5	2.1	1.2	0.9	1.5	4.1		69
Calme	1	4.7	4.5	3.2	1.9	1.6	1.4	1.6	1.9	2.7	4.4	5.4	5	4.5	4.2	3.3	3.4	3.5	4	12.9	61.2 12.9
Camile																				12.9	12.5
Toutes vitesses		94.3	223.6	16.6	3.2	2.2	1.8	2.8	6.2	21.2	40.2	35.8	25.9	11.8	7	5.1	4.9	6.1	13.8	12.9	535.4
Vitesses moyennes		5.4	7.4	3.9	1.6	1.3	1.3	1.7	3	4	3	2.8	2.7	2	1.5	1.5	1.5	1.9	2.5	0	5.1

Tableau 13 : Fréquence en origine des vents en fonction des différents secteurs de la rose des vents pour les conditions instables en l'absence de précipitations (2018 à 2020)

Référence*: TRICASTIN-20-002591		Orano Chimie	Orano Chimie - Enrichissement			
Version 2.0	PAGE 32/53	Installation :	Type de document*: NT	orano		
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX		
Référence RGF :		REJETS DU LEA				

8.1.2 Groupes de population retenus

8.1.2.1 Coordonnées géographiques

Les coordonnées des groupes de population sélectionnés sont présentées dans le tableau suivant.

Référence	Nom	Coordonnée	s Lambert 93	Type
Reference	Noill	X	Y	Туре
R3	Faveyrolles	836 369	6 363 704	
R12	Habitation ouest du site	836 132	6 361 162	
R14	Habitation Sud-Ouest du site	836 089	6 360 078	
R16	Habitation Sud-Ouest du site	836 520	6 359 346	Résidentiel
R19	Habitation Les Girardes	836 467	6 358 379	Residentiel
R22	Habitation Clos de Bonnot 837 584 6 359 402		6 359 402	
R26	Les Prés Guérinés	837 882	6 358 755	
R29	Bollène la Croisière	836 601	6 353 816	
P1	Locaux SOGEDEC	837 658	6 363 334	
P2	Serres à l'Ouest du site	836 448	6 362 193	Professionnel
P4	Centrale Biomasse	836 415	6 361 455	Fiolessionnei
P10	Entreprise EDF Tricastin	837 921	6 360 609	

Tableau 14 : Coordonnées des groupes de population sélectionnés

Référence*: TRICASTIN-20-002591		Orano Chimie	Orano Chimie - Enrichissement			
Version 2.0	PAGE 33/53	Installation :	Type de document*: NT	orano		
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX		
Référence RGF :		REJETS DU LEA				

8.1.2.2 <u>Distance et azimut des groupes de population par rapport à l'émissaire de rejets</u>

La donnée d'entrée nécessaire au module COTRAM est la position des groupes de population par rapport à la cheminée du LEA. La distance (en m) et l'azimut (en °) de la cheminée à chaque groupe de population sont présentés dans le tableau suivant.

Référence	Nom	Distance au point de rejet (m)	Azimut (en °)
R3	Faveyrolles	1 370	339
R12	Habitation ouest du site	1 450	210
R14	Habitation Sud-Ouest du site	2 470	198
R16	Habitation Sud-Ouest du site	3 100	186
R19	Habitation Les Girardes	4 060	185
R22	Habitation Clos de Bonnot	3 110	166
R26	Les Prés Guérinés	3 810	164
R29	Bollène la Croisière	8 610	182
P1	Locaux SOGEDEC	1 210	42
P2	Serres à l'Ouest du site	470	240
P4	Centrale Biomasse	1 060	204
P10	Entreprise EDF Tricastin	2 110	150

Tableau 15 : Distance et azimut entre la cheminée du LEA et les groupes de population sélectionnés

8.2 Calcul de dispersion dans le milieu aquatique

Non concerné dans le cadre de cette étude.

Référence*: TRICASTIN-20-002591		Orano Chimie	Orano Chimie - Enrichissement			
Version 2.0	PAGE 34/53	Installation :	Type de document*: NT	orano		
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX		
Référence RGF :		REJETS DU LEA				

9 DOSE EFFICACE GLOBALE ANNUELLE

Le tableau suivant présente la dose efficace globale (mSv/an) due aux rejets atmosphériques radiologiques du LEA pour les groupes de population sélectionnés précédemment.

Crawna da manulatian	Dos	se efficace global	e annuelle (mSv	/an)				
Groupe de population	1-2 ans	2-7 ans	7-12 ans	Adulte				
Faveyrolles (R3)	2,68.10 ⁻⁷	3,41.10 ⁻⁷	3,40.10 ⁻⁷	4,02.10 ⁻⁷				
Habitation ouest du site (R12)	4,30.10 ⁻⁶	5,47.10 ⁻⁶	5,47.10 ⁻⁶	6,49.10 ⁻⁶				
Habitation Sud-Ouest du site (R14)	1,43.10 ⁻⁶	1,81.10 ⁻⁶	1,81.10 ⁻⁶	2,15.10 ⁻⁶				
Habitation Sud-Ouest du site (R16)	9,96.10 ⁻⁷	1,27.10-6	1,27.10 ⁻⁶	1,50.10 ⁻⁶				
Habitation Les Girardes (R19)	6,38.10 ⁻⁷	8,12.10 ⁻⁷	8,11.10 ⁻⁷	9,61.10 ⁻⁷				
Habitation Clos de Bonnot (R22)	2,09.10 ⁻⁷	2,66.10 ⁻⁷	2,66.10 ⁻⁷	3,15.10 ⁻⁷				
Les Prés Guérinés (R26)	1,46.10 ⁻⁷	1,85.10 ⁻⁷	1,85.10 ⁻⁷	2,19.10 ⁻⁷				
Bollène la Croisière (R29)	1,66.10 ⁻⁷	2,11.10 ⁻⁷	2,10.10 ⁻⁷	2,49.10 ⁻⁷				
Locaux SOGEDEC (P1)		•		9,77.10 ⁻⁶				
Serres à l'Ouest du site (P2)				3,04.10-6				
Centrale Biomasse (P4)		-		9,91.10 ⁻⁶				
Entreprise EDF Tricastin (P10)				3,16.10 ⁻⁷				
Valeur de référence		1						

Tableau 16 : Doses efficaces globales annuelles pour les différentes classes d'âge

L'observation de ces résultats permet de mettre en évidence les groupes de population résidentiel et professionnel les plus exposés, en termes de dose efficace globale, aux rejets du LEA : il s'agit respectivement des groupe « Habitation ouest du site (R12) » et « Centrale biomasse (P4) ».

Le détail des calculs d'impact dosimétrique au niveau du groupe le plus exposé à savoir « Centrale biomasse (P4) » est présenté au § 0 du présent document.

Référence*: TRICASTIN-20-002591		Orano Chimie					
Version 2.0	PAGE 35/53	Installation :	Type de document*: NT	orano			
Ancien Code : Objet / Titre* : EVALUATION			N DE L'IMPACT DOSIMETRIQUE ASSOCIE AUX				
Référence RGF :		REJETS DU LEA					

10 CONCLUSION SUR LE CALCUL D'IMPACT DOSIMETRIQUE

Les résultats obtenus pour tous les groupes de population étudiés montrent que l'impact dosimétrique des rejets radiologiques du LEA peut être considéré comme très faible :

- de l'ordre de 0,00001 mSv au groupe professionnel le plus exposé pour l'adulte (P4) ;
- de l'ordre de 0,000006 mSv au groupe résidentiel le plus exposé pour l'adulte (R12).

Ces valeurs sont plus de 100 000 fois inférieures à la limite de dose annuelle ajoutée admissible (valeur réglementaire de 1 mSv pour le public, fixée par le Code de la santé publique).

Les résultats de l'impact dosimétrique de ces rejets radiologiques au niveau des groupes les plus exposés sont représentés graphiquement ci-dessous.

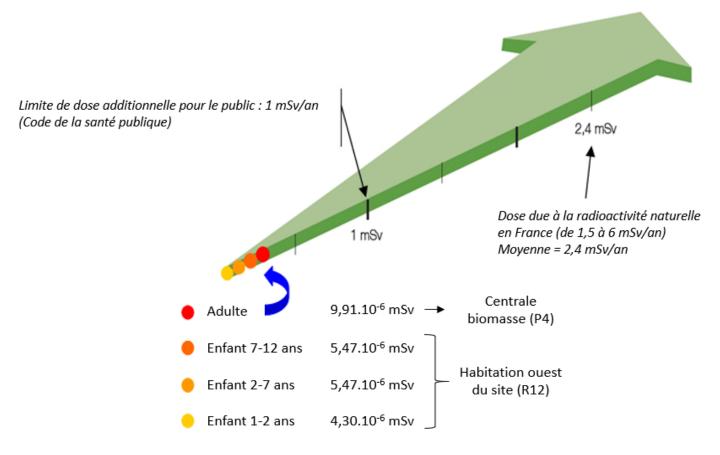


Figure 9 : Illustration de l'impact dosimétrique annuel lié aux rejets du LEA aux groupes de population les plus exposés

Référence*: TRICASTIN-20-002591		Orano Chimie					
Version 2.0	PAGE 36/53	Installation :	Type de document*: NT	orano			
Ancien Code :		Objet / Titre*: EVALUATION DE L'IMPACT DOSIMETRIQUE ASSOCIE AUX					
Référence RGF :		REJETS DU LEA					

11 ÉVALUATION DES INCERTITUDES

Les principales étapes de l'évaluation des risques susceptibles de présenter des incertitudes significatives sont la caractérisation des émissions, l'estimation des concentrations d'exposition et la quantification des risques. Les incertitudes associées à chaque étape sont discutées de manière qualitative dans les paragraphes qui suivent.

11.1 Incertitudes associées à la caractérisation des émissions

Le terme source des rejets atmosphériques du LEA a été déterminé à partir des valeurs annuelles maximales, mesurées ou estimées, sur la période 2012-20120, majorées de 50 %.

Afin de répartir radionucléide par radionucléide les activités alpha et bêta globales, les activités ont été déterminées, selon que ces les radionucléides sont émetteurs alpha ou bêta, à partir :

- de l'activité annuelle maximale, en alpha ou en bêta, sur la période 2012-2020;
- la part maximale de chaque radionucléide dans la production annuelle sur la période 2012-2020.

Ces deux données maximales peuvent, selon les radionucléides, correspondre à des années différentes. Cela constitue une hypothèse majorante. En effet il convient de remarquer que la somme des activités des émetteurs alpha et bêta ainsi déterminées (respectivement 6,6 et 24,9 kBq avant majoration de 50 %) sont nettement supérieures aux activités alpha et bêta maximales mesurées sur la période 2012-2020 (respectivement 5,8 et 12,3 kBq).

Toutes ces hypothèses permettent de prendre en compte la variabilité des productions annuelles du LEA et donc, a priori, de majorer le terme source.

De plus, comme présenté au § 6.1.2, certains radionucléides présents dans le terme source ne sont pas proposés par défaut dans la base de données de COMODORE.

Deux choix ont été retenus selon le type de radionucléides :

- les radionucléides gazeux ont été ajoutés manuellement, ce qui minimise les incertitudes;
- les activités des émetteurs bêta non disponibles dans COMODORE ont été ajoutées à l'activité d'un radionucléide plus pénalisant : cette hypothèse permet de majorer la dose obtenue puisqu'à activité rejetée égale, la dose obtenue est plus importante pour le radionucléide plus pénalisant que pour les radionucléides non disponibles dans le logiciel COMODORE. A noter toutefois que le 109Cd a été pris en compte car il avait été ajouté au logiciel COMODRE dans le cadre de l'étude des incidences du projet Fluo X.

11.2 Incertitudes associées à la modélisation de la dispersion atmosphérique

L'outil COMODORE est spécialisé dans ce type d'étude. Il est régulièrement utilisé par le groupe Orano pour l'évaluation des impacts radiologiques sur l'homme. Cet outil utilise des valeurs reconnues ou des paramètres réglementaires.

Cependant, tout modèle est une représentation simplifiée de la réalité, comprenant des éléments d'incertitudes qu'il est important de prendre en compte, notamment pour l'analyse des résultats. La qualité de ces résultats dépend d'une part, du modèle et de la modélisation (phénomène modélisé, équations utilisées...), d'autre part, de la qualité des données d'entrée saisies dans le modèle.

L'influence de la modélisation de la dispersion atmosphérique par le module COTRAM dépend du domaine de validité du modèle d'une part, d'autre part, du coefficient de transfert atmosphérique qui a un effet direct et proportionnel sur le résultat.

Selon le rapport de l'INERIS relatif aux méthodes pour évaluer et prévenir les risques accidentels [8], les résultats, obtenus grâce au modèle Gaussien, sont valables pour une distance de 100 m à quelques dizaines

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 37/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

de kilomètres. Au-delà de ces distances de dispersion, les résultats ne sont plus valables puisque d'autres phénomènes de turbulence et de diffusion doivent être considérés. Compte tenu des distances entre le point de rejet et les groupes de référence retenus, il apparaît que le modèle reste valide dans le cadre de l'étude.

Les données météorologiques utilisées proviennent de la station météorologique « La Piboulette » de la plateforme Orano du Tricastin. Les données collectées depuis janvier 2018 jusqu'à décembre 2020 ont été exploitées. Les données météorologiques spécifiques à la zone d'étude les plus récentes ont donc été utilisées dans le cadre de cette étude.

11.3 Incertitudes associées au calcul de dose

Les récepteurs ont été retenus au niveau des points où les concentrations maximales ont été modélisées, pour chaque type d'exposition. Pour l'ensemble des récepteurs, à la fois résidentiels et professionnels, une durée d'exposition permanente (24 h/j et 365 j/an) est considérée.

Il convient de préciser que cette hypothèse est majorante pour les récepteurs résidentiels et, à plus forte raison, pour les récepteurs professionnels. En effet, l'étude réalisée par l'Observatoire de la Qualité de l'Air Intérieur [9] indique que la moyenne du temps passé à l'intérieur du logement est de 16,2 heures par jour (soit 67,5 % du temps) pour l'ensemble de la population française, ce qui confirme le caractère majorant des calculs réalisés.

Les paramètres utilisés pour caractériser les risques liés à une exposition par ingestion sont les activités dans les aliments ingérés et les paramètres d'exposition tels que le poids corporel, les rations alimentaires ou les taux d'autoconsommation. Ces paramètres d'exposition sont relativement bien connus. Les rations alimentaires et taux d'autoconsommation correspondent à des valeurs spécifiques locales [7]. Il convient toutefois de préciser que l'enquête a été réalisée sur un groupe de personnes sélectionné précisément, reflétant des habitudes « rurales » avec un fort taux d'autoconsommation qui ne constitue pas le reflet du mode de vie de l'ensemble des habitants de la région.

En conclusion, les hypothèses volontairement pénalisantes retenues pour les calculs d'impact dosimétrique ont tendance à majorer les doses reçues par les populations environnantes.

11.4 Bilan des incertitudes

Aux incertitudes évaluées dans les paragraphes précédents peuvent s'ajouter les incertitudes liées aux connaissances techniques du moment. Ce type d'incertitude ne peut être quantifié.

L'approche qui a été suivie dans le cadre de cette étude est basée sur des informations spécifiques au site et sur des hypothèses pénalisantes, ce qui tend à majorer les résultats obtenus.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 38/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12 CALCUL D'IMPACT DETAILLE POUR LE GROUPE LE PLUS EXPOSE : « CENTRALE BIOMASSE » (P4)

Cette annexe présente les résultats détaillés de calculs d'activités et de doses liés aux rejets atmosphériques du LEA, pour le groupe de population le plus exposé, à savoir « Centrale biomasse » (P4).

12.1 Caractéristiques du groupe de population le plus exposé

Les paramètres de dispersion atmosphérique du groupe de population le plus exposé sont présentés dans le tableau suivant.

Centrale biomasse (P4)	LEA
Coefficient de transfert atmosphérique pour les aérosols (s/m³)	1.56E-5
Coefficient de transfert atmosphérique pour les gaz rares, le ³ H et le ¹⁴ C (s/m ³)	1.66E-5
Débit de dépôt sec (Bq.m ⁻² .s ⁻¹ /Bq.s ⁻¹ rejeté) Compte tenu des très faibles valeurs des radiations dues au tritium pas de valeur spécifique pour le tritium	7.82E-8
Débit de dépôt humide (Bq.m ⁻² .s ⁻¹ /Bq.s ⁻¹ rejeté)	9.28E-10
Débit de dépôt total (Bq.m ⁻² .s ⁻¹ /Bq.s ⁻¹ rejeté)	7.91E-8

Tableau 17 : Paramètres de dispersion atmosphérique du groupe de population le plus exposé « Centrale biomasse (P4) »

12.2 Evaluation des transferts dans les différents milieux d'exposition

12.2.1 Activité dans les sols due aux rejets atmosphériques (Bg/m²)

Radionucléides	Activité dans les sols (Bq/m²)	Radionucléides	Activité dans les sols (Bq/m²)
Co-57	1.34E-1	Cs-134	3.37E-3
I-125	2.09E-2	Cs-137+Ba-137m	1.33E-2
I-131	2.83E-4	Eu-152	3.29E-3
Am-241	1.93E-2	Fe-55	3.04E-5
Cm-244	4.51E-4	Mn-54	5.44E-5
Np-237	5.59E-4	Na-22	9.00E-5
Pu-238	2.07E-4	Ni-63	8.49E-5
Pu-239	1.56E-3	Pm-147	7.09E-6
U-233	1.60E-6	Sr-89	1.60E-6
Ag-110m	1.49E-4	Sr-90	5.29E-3
CI-36	1.43E-6	Tc-99	1.25E-5
Co-60	9.42E-4	Zn-65	7.16E-5
Cr-51	1.31E-5	Cd-109	1.61E0

Tableau 18 : Activité dans les sols due aux rejets atmosphériques

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 39/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	IQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.2.2 Activité dans les produits d'origine animale due aux rejets atmosphériques (Bq/kg)

12.2.2.1 Hors Tritium, Carbone 14 et gaz rares

Radionucléides	Bœuf (Bq/kg)	Mouton (Bq/kg)	Porc (Bq/kg)	Volaille (Bq/kg)	Œuf (Bq/kg)
Co-57	5.13E-5	2.70E-4	6.93E-4	1.05E-4	3.56E-6
I-125	3.35E-4	2.98E-4	7.95E-5	1.72E-7	4.74E-5
I-131	1.81E-5	1.67E-5	2.79E-6	3.37E-10	9.29E-8
Am-241	4.40E-7	2.30E-8	2.17E-9	6.42E-10	9.63E-9
Cm-244	2.94E-9	2.58E-9	5.32E-7	6.03E-12	3.26E-12
Np-237	3.28E-9	2.93E-9	5.42E-8	4.02E-10	2.01E-10
Pu-238	1.07E-11	1.21E-10	6.65E-12	7.01E-12	4.20E-11
Pu-239	7.39E-11	8.54E-10	4.96E-11	5.16E-11	3.10E-10
U-233	4.73E-11	5.18E-11	7.63E-10	1.44E-12	4.07E-13
Ag-110m	1.58E-7	1.44E-8	6.06E-7	1.30E-10	2.36E-9
CI-36	2.87E-7	2.57E-7	1.40E-7	6.53E-10	6.53E-8
Co-60	6.15E-8	3.41E-7	2.22E-6	2.37E-7	8.06E-9
Cr-51	3.84E-7	7.84E-7	4.25E-9	9.65E-9	8.88E-11
Cs-134	3.48E-5	5.58E-5	2.16E-5	5.19E-6	7.69E-7
Cs-137+Ba-137m	2.25E-5	4.11E-5	3.25E-5	7.21E-6	1.07E-6
Eu-152	1.34E-6	2.84E-6	3.36E-7	2.63E-9	4.61E-9
Fe-55	1.12E-7	1.52E-8	1.30E-9	2.19E-8	1.97E-8
Mn-54	3.38E-8	9.69E-8	7.22E-9	8.11E-11	1.79E-9
Na-22	4.10E-7	5.75E-7	0.00E0	2.43E-7	1.39E-7
Ni-63	2.31E-8	5.22E-9	1.67E-8	7.44E-11	5.95E-9
Pm-147	9.81E-9	1.87E-8	2.06E-10	5.26E-12	5.26E-12
Sr-89	7.98E-9	1.84E-9	2.43E-10	3.98E-11	6.96E-10
Sr-90	6.83E-7	1.57E-7	1.55E-7	2.42E-8	4.24E-7
Tc-99	1.07E-7	1.92E-6	8.33E-9	2.46E-9	1.56E-7
Zn-65	1.22E-5	6.29E-7	6.21E-7	3.92E-8	1.17E-7
Cd-109	6.71E-3	2.62E-4	5.83E-4	1.82E-3	2.14E-5

Tableau 19 : Activité dans les produits d'origine animale due aux rejets atmosphériques - Hors ³H, ¹⁴C et gaz rares

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 40/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	IQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.2.2.2 Tritium, Carbone 14 et gaz rares

Radionucléides	Bœuf (Bq/kg)	Mouton (Bq/kg)	Volaille (Bq/kg)	Lait de vache (Bq/I)	Œuf (Bq/kg)
H-3	7.88E-3	7.88E-3	7.88E-3	1.01E-2	7.88E-3
C-14	2.14E-5	2.14E-5	2.14E-5	7.13E-6	2.14E-5
Kr-85	0	0	0	0	0
Xe-133	0	0	0	0	0
Xe-127	0	0	0	0	0

Tableau 20 : Activité dans les produits d'origine animale due aux rejets atmosphériques - 3H, 14C et gaz rares

12.2.3 Activité dans le lait de vache due aux rejets atmosphériques (Bq/l)

12.2.3.1 Hors Tritium, Carbone 14 et gaz rares

Radionucléides	Lait de vache (Bq/I)	Radionucléides	Lait de vache (Bq/I)
Co-57	1.47E-05	Cs-134	8.50E-06
I-125	2.68E-04	Cs-137+Ba-137m	5.28E-06
I-131	1.31E-05	Eu-152	5.89E-09
Am-241	3.80E-10	Fe-55	3.20E-10
Cm-244	3.18E-11	Mn-54	2.50E-09
Np-237	3.51E-11	Na-22	4.04E-07
Pu-238	1.02E-10	Ni-63	4.71E-09
Pu-239	6.92E-10	Pm-147	4.50E-11
U-233	2.41E-10	Sr-89	7.80E-09
Ag-110m	5.25E-06	Sr-90	8.09E-07
CI-36	3.07E-07	Tc-99	1.26E-06
Co-60	1.77E-08	Zn-65	2.40E-07
Cr-51	3.06E-08	Cd-109	2.46E-04

Tableau 21 : Activité dans le lait de vache due aux rejets atmosphériques - Hors ³H, ¹⁴C et gaz rares

12.2.3.2 Tritium, Carbone 14 et gaz rares

Radionucléides	Lait de vache (Bq/I)
H-3	1.01E-2
C-14	7.13E-6
Kr-85	0
Xe-133	0
Xe-127	0

Tableau 22 : Activité dans le lait de vache due aux rejets atmosphériques - 3H, 14C et gaz rares

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 41/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.2.4 Activité dans les végétaux due aux rejets atmosphériques (Bq/kg frais)

12.2.4.1 Hors Tritium, Carbone 14 et gaz rares

	Activité dans les végétaux (Bq/kg frais)							
Radionucléides	Foin	Herbe	Maïs	Céréale	Légume racine	Fruit	Légume fruit	Légume feuille
Co-57	3.47E-03	2.74E-03	1.14E-03	3.17E-02	1.83E-02	8.00E-05	4.74E-05	1.01E-03
I-125	1.58E-03	1.23E-03	4.84E-04	4.83E-03	9.49E-05	3.12E-05	1.77E-05	4.62E-04
I-131	8.90E-05	6.95E-05	2.67E-05	2.67E-04	5.22E-06	1.69E-06	9.48E-07	2.62E-05
Am-241	1.92E-05	1.58E-05	6.32E-06	1.27E-06	1.28E-05	4.39E-09	3.48E-09	5.57E-06
Cm-244	7.26E-07	5.66E-07	2.39E-07	4.77E-08	4.84E-07	3.17E-09	1.79E-09	2.10E-07
Np-237	8.10E-07	6.18E-07	2.58E-07	2.51E-06	5.12E-07	6.64E-09	5.19E-09	2.24E-07
Pu-238	2.25E-07	1.76E-07	7.40E-08	1.48E-08	1.50E-07	1.88E-11	1.24E-11	6.53E-08
Pu-239	1.51E-06	1.18E-06	4.97E-07	9.95E-08	1.01E-06	1.30E-10	8.68E-11	4.38E-07
U-233	3.32E-09	2.38E-09	1.00E-09	2.12E-10	2.04E-09	2.53E-11	1.95E-11	8.90E-10
Ag-110m	4.58E-06	3.66E-06	1.43E-06	2.11E-06	2.76E-07	8.89E-08	4.96E-08	1.22E-06
CI-36	4.16E-07	4.01E-07	7.98E-08	1.01E-07	9.31E-09	5.88E-08	5.82E-08	2.75E-08
Co-60	3.67E-06	3.05E-06	1.22E-06	3.34E-05	1.94E-05	1.22E-07	8.75E-08	1.08E-06
Cr-51	2.50E-06	1.95E-06	7.79E-07	7.79E-06	1.53E-06	9.88E-09	5.51E-09	7.31E-07
Cs-134	4.61E-05	3.49E-05	1.60E-05	9.75E-04	2.92E-04	5.38E-05	3.00E-05	1.28E-05
Cs-137+Ba-137m	3.09E-05	1.99E-05	8.98E-06	5.39E-04	1.63E-04	3.02E-05	1.69E-05	7.20E-06
Eu-152	6.81E-06	5.34E-06	2.22E-06	4.61E-07	2.20E-08	5.07E-08	3.80E-08	1.96E-06
Fe-55	2.23E-07	1.74E-07	7.33E-08	1.98E-06	1.49E-08	4.80E-09	2.68E-09	6.48E-08
Mn-54	1.29E-06	1.32E-06	4.34E-07	9.27E-06	1.96E-07	1.09E-08	8.55E-09	3.61E-07
Na-22	7.06E-07	6.05E-07	2.43E-07	4.49E-06	4.56E-07	1.48E-07	8.27E-08	1.99E-07
Ni-63	1.35E-07	8.53E-08	3.56E-08	4.67E-08	8.12E-09	6.92E-09	6.03E-09	2.89E-08
Pm-147	5.50E-08	4.30E-08	1.80E-08	3.92E-09	3.65E-08	2.66E-10	1.63E-10	1.59E-08
Sr-89	1.98E-07	1.52E-07	6.22E-08	1.23E-06	3.68E-08	1.80E-08	1.04E-08	5.68E-08
Sr-90	2.25E-05	1.03E-05	5.10E-06	5.16E-05	2.16E-06	3.20E-06	2.88E-06	3.38E-06
Tc-99	4.68E-06	2.39E-06	8.04E-07	7.50E-06	2.42E-07	7.97E-08	5.80E-08	1.22E-06
Zn-65	2.20E-06	1.71E-06	9.57E-07	1.06E-04	1.42E-07	1.89E-06	1.06E-06	6.20E-07
Cd-109	3.21E-02	2.64E-02	9.83E-03	6.08E-02	2.45E-03	1.62E-03	1.38E-03	8.51E-03

Tableau 23 : Activité dans les végétaux due aux rejets atmosphériques - Hors ³H, ¹⁴C et gaz rares

12.2.4.2 Tritium, Carbone 14 et gaz rares

	Activité dans les végétaux (Bq/kg frais)							
Radionucléides	Foin	Herbe	Maïs	Céréale	Légume racine	Fruit	Légume fruit	Légume feuille
H-3	1.01E-02	1.01E-02	1.01E-02	1,13E-03	9.00E-03	9.00E-03	9.00E-03	1.01E-02
C-14	7.13E-06	7.13E-06	7.13E-06	6.41E-05	1.42E-05	1.42E-05	1.42E-05	7.13E-06
Kr-85	0	0	0	0	0	0	0	0
Xe-133	0	0	0	0	0	0	0	0
Xe-127	0	0	0	0	0	0	0	0

Tableau 24 : Activité dans les végétaux due aux rejets atmosphériques - 3H, 14C et gaz rares

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 42/53	Installation : Type de document* : NT		orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.2.5 Activité dans les produits dérivés due aux rejets atmosphériques (Bq/kg frais ou Bq/l)

12.2.5.1 Hors Tritium, Carbone 14 et gaz rares

Radionucléides	Produits laitiers	Vin
Co-57	1.47E-05	3.09E-04
I-125	6.15E-04	1.21E-04
I-131	3.02E-05	6.55E-06
Am-241	3.80E-10	1.70E-08
Cm-244	3.18E-11	1.23E-08
Np-237	3.51E-11	2.57E-08
Pu-238	1.02E-10	7.29E-11
Pu-239	6.92E-10	5.03E-10
U-233	2.41E-10	9.79E-11
Ag-110m	5.25E-06	3.44E-07
CI-36	3.07E-07	2.28E-07
Co-60	1.77E-08	4.72E-07
Cr-51	3.06E-08	3.82E-08
Cs-134	8.50E-06	2.08E-04
Cs-137+Ba-137m	5.28E-06	1.17E-04
Eu-152	5.89E-09	1.96E-07
Fe-55	3.20E-10	1.86E-08
Mn-54	2.50E-09	4.21E-08
Na-22	4.04E-07	5.71E-07
Ni-63	4.71E-09	2.68E-08
Pm-147	4.50E-11	1.03E-09
Sr-89	6.39E-08	6.98E-08
Sr-90	6.64E-06	1.24E-05
Tc-99	1.26E-06	3.08E-07
Zn-65	2.40E-07	7.30E-06
Cd-109	2.46E-04	6.28E-03

Tableau 25 : Activité dans les produits dérivés due aux rejets atmosphériques - Hors 3H, 14C et gaz rares

12.2.5.2 Tritium, Carbone 14 et gaz rares

Radionucléides	Produits laitiers	Vin	
H-3	1,01E-02	9.00E-03	
C-14	7,13E-06	1.42E-05	
Kr-85	0	0	
Xe-133	0	0	
Xe-127	0	0	

Tableau 26 : Activité dans les produits dérivés due aux rejets atmosphériques - ³H, ¹⁴C et gaz rares

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 43/53	Installation : Type de document* : NT		orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.2.6 Activité dans l'air due aux rejets atmosphériques (Bq/m³)

12.2.6.1 Hors Tritium, Carbone 14 et gaz rares

Radionucléides	Air (Bq/m³)	Radionucléides	Air (Bq/m³)
Co-57	7.82E-7	Cs-134	7.13E-9
I-125	5.49E-7	Cs-137+Ba-137m	3.91E-9
I-131	5.59E-8	Eu-152	1.47E-9
Am-241	4.23E-9	Fe-55	4.91E-11
Cm-244	1.59E-10	Mn-54	2.76E-10
Np-237	1.68E-10	Na-22	1.50E-10
Pu-238	4.96E-11	Ni-63	2.06E-11
Pu-239	3.34E-10	Pm-147	1.20E-11
U-233	6.63E-13	Sr-89	5.06E-11
Ag-110m	9.46E-10	Sr-90	1.70E-9
CI-36	2.22E-11	Tc-99	4.94E-10
Co-60	7.96E-10	Zn-65	4.65E-10
Cr-51	7.50E-10	Cd-109	5.69E-6

Tableau 27 : Activité dans l'air due aux rejets atmosphériques - Hors ³H, ¹⁴C et gaz rares

12.2.6.2 Tritium, Carbone 14 et gaz rares

Radionucléides	Air (Bq/m³)
H-3	9.00E-5
C-14	2.67E-8
Kr-85	4.76E-3
Xe-133	2,41E-05
Xe-127	2,41E-05

Tableau 28 : Activité dans l'air due aux rejets atmosphériques - 3H, 14C et gaz rares

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 44/53	Installation : Type de document* : NT		orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	IQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.3 Évaluation des niveaux d'exposition internes de la population

12.3.1 Activité ingérée due aux rejets atmosphériques - Ingestion de produits d'origine animale

12.3.1.1 Hors Tritium, Carbone 14 et gaz rares

Radionucléides	Adulte (Bq/an)	Radionucléides	Adulte (Bq/an)
Co-57	2.15E-3	Cs-134	1.07E-4
I-125	2.47E-4	Cs-137+Ba-137m	1.49E-4
I-131	1.08E-6	Eu-152	1.47E-7
Am-241	5.87E-8	Fe-55	5.07E-7
Cm-244	1.19E-7	Mn-54	1.17E-8
Np-237	2.07E-8	Na-22	5.26E-6
Pu-238	3.35E-10	Ni-63	3.36E-8
Pu-239	2.47E-9	Pm-147	1.71E-10
U-233	2.00E-10	Sr-89	4.13E-9
Ag-110m	1.49E-7	Sr-90	2.52E-6
CI-36	3.56E-7	Tc-99	7.93E-7
Co-60	5.01E-6	Zn-65	1.44E-6
Cr-51	1.84E-7	Cd-109	3.47E-2

Tableau 29 : Activité ingérée due aux rejets atmosphériques - Ingestion de produit d'origine animal - Hors ³H, ¹⁴C et gaz rares

12.3.1.2 Tritium, Carbone 14 et gaz rares

Radionucléides	Adulte (Bq/an)
H-3	1.88E-1
C-14	5.10E-4
Kr-85	0
Xe-133	0
Xe-127	0

Tableau 30 : Activité ingérée due aux rejets atmosphériques - Ingestion de produit d'origine animal - ³H, ¹⁴C et gaz rares

12.3.2 Activité ingérée due aux rejets atmosphériques - Ingestion de végétaux (Bg/an)

12.3.2.1 Hors Tritium, Carbone 14 et gaz rares

Radionucléides Adulte (Bq/an)		Radionucléides	Adulte (Bq/an)
Co-57	1.16E0	Cs-134	2.33E-2

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 45/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

Radionucléides	Adulte (Bq/an)	Radionucléides	Adulte (Bq/an)
I-125	3.70E-2	Cs-137+Ba-137m	1.31E-2
I-131	2.08E-3	Eu-152	1.29E-4
Am-241	1.11E-3	Fe-55	5.37E-6
Cm-244	4.23E-5	Mn-54	3.53E-5
Np-237	4.52E-5	Na-22	5.36E-5
Pu-238	1.30E-5	Ni-63	3.10E-6
Pu-239	8.76E-5	Pm-147	3.20E-6
U-233	1.80E-7	Sr-89	7.27E-6
Ag-110m	1.00E-4	Sr-90	7.20E-4
CI-36	9.64E-6	Tc-99	9.87E-5
Co-60	1.24E-3	Zn-65	2.18E-4
Cr-51	1.38E-4	Cd-109	8.54E-1

Tableau 31 : Activité ingérée due aux rejets atmosphériques - Ingestion de végétaux - Hors ³H, ¹⁴C et gaz rares

12.3.2.2 Tritium, Carbone 14 et gaz rares

Radionucléides	Adulte (Bq/an)
H-3	2.29
C-14	3.09E-3
Kr-85	0
Xe-133	0
Xe-127	0

Tableau 32 : Activité ingérée due aux rejets atmosphériques - Ingestion de végétaux - ³H, ¹⁴C et gaz rares

Référence*: TRICASTIN-20-0	02591	Orano Chimie - Enrichissement		
Version 2.0	PAGE 46/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION DE L'IMPACT DOSIMETRIQUE ASSOCI		IQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.3.3 Activité ingérée due aux rejets atmosphériques - Ingestion de produits dérivés (Bq/an)

12.3.3.1 Hors Tritium, Carbone 14 et gaz rares

Radionucléides	Adulte (Bq/an)	Radionucléides	Adulte (Bq/an)
Co-57	1.21E-02	Cs-134	8.18E-03
I-125	5.10E-03	Cs-137+Ba-137m	4.58E-03
I-131	2.75E-04	Eu-152	7.71E-06
Am-241	6.67E-07	Fe-55	7.29E-07
Cm-244	4.82E-07	Mn-54	1.65E-06
Np-237	1.01E-06	Na-22	2.27E-05
Pu-238	2.92E-09	Ni-63	1.05E-06
Pu-239	2.02E-08	Pm-147	4.05E-08
U-233	3.99E-09	Sr-89	2.78E-06
Ag-110m	1.67E-05	Sr-90	4.90E-04
CI-36	9.11E-06	Tc-99	1.29E-05
Co-60	1.85E-05	Zn-65	2.86E-04
Cr-51	1.52E-06	Cd-109	2.46E-01

Tableau 33 : Activité ingérée due aux rejets atmosphériques - Ingestion de produits dérivés - Hors ³H, ¹⁴C et gaz rares

12.3.3.2 Tritium, Carbone 14 et gaz rares

Radionucléides	Adulte (Bq/an)
H-3	3.59E-1
C-14	5.62E-4
Kr-85	0
Xe-133	0
Xe-127	0

Tableau 34 : Activité ingérée due aux rejets atmosphériques - Ingestion de produits dérivés - ³H, ¹⁴C et gaz rares

Référence*: TRICASTIN-20-0	02591	Orano Chimie - Enrichissement		
Version 2.0	PAGE 47/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION DE L'IMPACT DOSIMETRIQUE ASSOCI		IQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.3.4 Activité ingérée due aux rejets atmosphériques - Ingestion de sol par inadvertance (Bg/an)

Radionucléides	Adulte (Bq/an)	Radionucléides	Adulte (Bq/an)
Co-57	3.27E-05	Cs-134	8.23E-07
I-125	5.10E-06	Cs-137+Ba-137m	3.26E-06
I-131	6.90E-08	Eu-152	8.04E-07
Am-241	4.72E-06	Fe-55	7.42E-09
Cm-244	1.10E-07	Mn-54	1.33E-08
Np-237	1.36E-07	Na-22	2.20E-08
Pu-238	5.06E-08	Ni-63	2.07E-08
Pu-239	3.81E-07	Pm-147	1.73E-09
U-233	3.90E-10	Sr-89	3.91E-10
Ag-110m	3.63E-08	Sr-90	1.29E-06
CI-36	3.50E-10	Tc-99	3.06E-09
Co-60	2.30E-07	Zn-65	1.75E-08
Cr-51	3.20E-09	Cd-109	3.93E-04

Tableau 35 : Activité ingérée due aux rejets atmosphériques - Ingestion de sols par inadvertance

12.3.5 Activité inhalée (Bq/an)

12.3.5.1 Hors Tritium, Carbone 14 et gaz rares

Radionucléides	Adulte (Bq/an)	Radionucléides	Adulte (Bq/an)
Co-57	6.33E-3	Cs-134	5.78E-5
I-125	4.45E-3	Cs-137+Ba-137m	3.16E-5
I-131	4.53E-4	Eu-152	1.19E-5
Am-241	3.43E-5	Fe-55	3.98E-7
Cm-244	1.29E-6	Mn-54	2.24E-6
Np-237	1.36E-6	Na-22	1.22E-6
Pu-238	4.02E-7	Ni-63	1.67E-7
Pu-239	2.70E-6	Pm-147	9.76E-8
U-233	5.37E-9	Sr-89	4.10E-7
Ag-110m	7.67E-6	Sr-90	1.38E-5
CI-36	1.80E-7	Tc-99	4.01E-6
Co-60	6.45E-6	Zn-65	3.77E-6
Cr-51	6.07E-6	Cd-109	4.61E-2

Tableau 36 : Activité inhalée - Hors ³H, ¹⁴C et gaz rares

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0	PAGE 48/53	Installation :	Type de document*: NT	orano
Ancien Code :		Objet / Titre*: EVALUATION DE L'IMPACT DOSIMETRIQUE ASSOC		RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.3.5.2 Tritium, Carbone 14 et gaz rares

Radionucléides	Adulte (Bq/an)
H-3	7,29E-01
C-14	2,16E-04
Kr-85	3,86E+01
Xe-133	1,96E-01
Xe-127	1,95E-01

Tableau 37 : Activité inhalée - 3H, 14C et gaz rares

12.4 Résultats détaillés du calcul de dose

12.4.1 Résultats détaillés du calcul de dose par voie d'exposition

Le tableau ci-après, présente, pour les adultes du groupe de population le plus exposé à savoir « Centrale biomasse (P4) », la dose reçue par voie d'exposition.

Voies d'exposition	Dose - Adulte (mSv/an)	Contribution de chaque voie d'exposition à la dose totale
Ingestion de produits terrestres	4,39E-06	44 %
Ingestion de sol par inadvertance	2,05E-09	0,02 %
Exposition externe au dépôt	1,19E-06	12 %
Exposition externe au panache	4,92E-08	0,5 %
Inhalation	4,28E-06	43 %
Total	9,91E-06	100 %

Tableau 38 : Dose efficace globale (mSv/an) par voie d'exposition chez l'adulte au groupe « Centrale biomasse (P4) »

La dose reçue par un adulte au groupe « Centrale biomasse (P4) » soumis aux rejets atmosphériques du LEA est de 9,91.10⁻⁶ mSv/an. Cette valeur de dose est largement inférieure à la limite réglementaire de 1 mSv/an (Code de la santé publique).

L'exposition provient essentiellement de l'ingestion de produits terrestres (44 %) puis de l'inhalation (43 %) . Les autres voies d'exposition représentent moins de 13 % de la dose totale.

Il convient de rappeler que ce calcul est très majorant car en première approche les groupes professionnels ont été considérés de la même manière que les groupes résidentiels. C'est-à-dire que les adultes travaillant au groupe résidentiel « Centrale biomasse (P4) » sont exposé 100 % du temps en ce lieu ce qui est très pénalisant.

Un scénario « mixte » considérant un salarié travaillant 8 h par jours, 220 jours par an au groupe de référence professionnel le plus exposé (Centrale biomasse (P4)) et résidant le reste du temps (soit environ 80 % du temps) au groupe résidentiel le plus exposé (Habitation ouest du site (R12)) conduirait à une dose annuelle de 7,18.10-6 mSv.

Référence*: TRICASTIN-20-0	02591	Orano Chimie - Enrichissement		
Version 2.0	PAGE 49/53	Installation :	Type de document*: NT	orano
Ancien Code:		Objet / Titre*: EVALUATION DE L'IMPACT DOSIMETRIQUE ASSOCIE		RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

12.4.2 Résultats détaillés du calcul de dose par radionucléide

Le tableau ci-après, présente, pour le groupe de population le plus exposé Adulte du lieu-dit « Centrale biomasse (P4) », la dose liée à chaque radionucléide (mSv/an).

Radionucléides	Dose - Adulte (mSv/an)	Contribution de chaque radionucléide à la dose totale
Co-57	5.21E-07	5%
I-125	6.74E-07	7%
I-131	5.71E-08	0,6%
Am-241	3.52E-06	36%
Cm-244	7.87E-08	0,8%
Np-237	7.32E-08	0,7%
Pu-238	4.72E-08	0,5%
Pu-239	3.46E-07	3%
U-233	6.10E-11	0,0006%
Ag-110m	7.26E-09	0,07%
CI-36	1.91E-11	0,0002%
Co-60	4.29E-08	0,4%
Cr-51	1.26E-11	0,0001%
Cs-134*	6.90E-07	7%
Cs-137+Ba-137m	3.01E-07	3%
Eu-152	6.35E-08	0,6%
Fe-55	2.49E-12	0,00003%
Mn-54	7.97E-10	0,008%
Na-22	3.46E-09	0,03%
Ni-63	8.47E-13	0,00009%
Pm-147	1.33E-12	0,00001%
Sr-89	2.94E-11	0,0003%
Sr-90	3.62E-08	0,4%
Tc-99	1.24E-10	0,001%
Zn-65	2.67E-09	0,03%
Cd-109	3.27E-06	33%
H-3	7.08E-08	0,7%
C-14	2.41E-09	0,02%
Kr-85	7.65E-08	0,8%
Xe-133	2.25E-09	0,02%
Xe-127	1.80E-08	0,2%
Total	9.91E-06	100%

^{*} L'activité rejetée en ¹³⁴Cs correspond à l'activité de ce radionucléide ainsi que l'activité des émetteurs bêta non proposés par le logiciel COMODORE, à savoir le ¹³³Ba, ⁴⁵Ca, ¹³⁹Ce, ⁵⁹Fe, ³²P, ³⁵S, ¹¹³Sn, ⁸⁵Sr, ²⁰⁴Tl et ⁸⁸Y.

Tableau 39 : Dose efficace globale (mSv/an) par radionucléide chez l'adulte au groupe « Centrale biomasse »

Les plus gros contributeurs sont l'²⁴¹Am (36 %) et le ¹⁰⁹Cd (33 %). A eux deux ils représentent près des deux tiers de la dose efficace globale. Il convient de rappeler que pour le ¹³⁴Cs qui constitue 7 % de la dose, l'activité des radionucléides émetteurs bêta non proposés par le logiciel COMODORE a été ajoutée à l'activité de ce radionucléide, ce qui conduit à multiplier l'activité rejetée correspondante par un coefficient de l'ordre de 22, et donc à surestimer sa contribution d'autant.

Référence*: TRICASTIN-20-002591		Orano Chimie - Enrichissement		
Version 2.0 PAGE 50/53		Installation :	Type de document*: NT	orano
Ancien Code :	•	Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX
Référence RGF :		REJETS DU LEA		

13 ANNEXE

13.1 Annexe 1 : Détermination du terme source

Les radionucléides rejetés à l'atmosphère constituent le terme source. Ce terme source sert de donnée d'entrée au calcul d'impact. Il précise pour chaque radionucléide les quantités rejetées par an.

D'une manière générale, le terme source est construit à partir des valeurs annuelles maximales rejetées sur la période 2012-2020, majorées de 50 %.

Dans un premier temps, les hypothèses suivantes sont retenues :

- pour le ⁸⁵Kr, le ¹³³Xe, le ¹²⁷Xe et le ¹⁴C, la valeur annuelle maximale estimée, pour la période 2012-2020, est retenue :
- pour l'activité alpha globale, l'activité bêta globale (hors ⁵⁷Co), l'¹²⁵I, l'¹³¹I et le ³H, la valeur annuelle maximale mesurée sur la période 2012-2020 est retenue.

L'ensemble des valeurs maximales ainsi obtenues a été majoré de 50 % afin de couvrir des émissions potentiellement plus élevées que les maximums historiques observés.

Pour le ⁵⁷Co, l'activité « Fluo X » a été prise en compte. Cette activité n'ayant pas encore démarrée à la date de rédaction de cette étude, l'activité rejetée en ⁵⁷Co a été estimée de manière majorante. Une valeur de 1,58.10⁶ Bg/an a été retenue.

Référence*: TRICASTIN-20-002591		Orano Chimie			
Version 2.0	PAGE 51/53	Installation:	Type de document*: NT	orano	
Ancien Code :		· ·	DE L'IMPACT DOSIMETR	RIQUE ASSOCIE AUX	
Référence RGF :		REJETS DU LEA			

		Activité rejetée										
	Unité	2012	2013	2014	2015	2016	2017	2018	2019	2020	Maximum 2012- 2020	Maximum 2012-2020 majoré de 50%
					Va	leurs esti	mées					
Kr85		273	296,8	250,3	37,5	129	57,9	6030	150	496	6030	9045
Xe133	MBq	30,58	30,58	30,58	0	0	0	0	0	0	30,58	45,87
Xe127		30,46	30,46	30,46	0	0	0	0	0	0	30,46	45,69
C14	kBq	9,7	25,5	22	11,5	11,97	19,54	3,9	33,8	18,8	33,8	50,7
					Va	leurs mes	urées					
Activité α		5,8	4,6	3,2	4,8	5,6	5,5	2,6	2,7	2,2	5,8	8,7
Activité β*		12,3	9,2	7	10,8	11,3	10,5	7,9	7,4	6,2	12,3	18,5
Co57	kBq	-	-	-	-	24,4	32,7	39,4	15,6	12,4	39,4	59,1**
l125	квч	743	177	349	691,7	17,6	101	9	422	37	743	1114,5
I131		32	12,3	75	56,1	35,5	36	41	50	45,3	75	112,5
H3		65700	114000	100000	95600	88500	69800	45800	54700	58800	114000	171000

^{*} hors ⁵⁷Co.

Tableau 40 : Détermination du terme source (1/2)

Dans un second temps, les activités des autres radionucléides sont déterminées, selon que ces derniers sont émetteurs alpha ou bêta, à partir :

- de l'activité annuelle maximale, en alpha ou en bêta, sur la période 2012-2020 (déterminée au * hors 57Co.
- ** L'activité retenue en ^{57Co} dans le cadre de cette étude est de 1,58.103 kBq intégrant les rejets du projet Fluo X, estimés de manière majorante.
 - Tableau 40);
 - la part maximale de chaque radionucléide dans la production annuelle sur la période 2012-2020.

Ces deux données maximales peuvent, selon les radionucléides, correspondre à deux années différentes. Cela constitue une hypothèse majorante.

L'ensemble des valeurs maximales ainsi obtenues a été majoré de 50 % afin de couvrir des émissions potentiellement plus élevées que les maximums historiques observés.

Concernant le ¹⁰⁹Cd, l'activité « Fluo X » a été prise en compte. Cette activité n'ayant pas encore démarrée à la date de rédaction de cette étude, l'activité rejetée en ¹⁰⁹Cd a été estimée de manière majorante. Une valeur de 1,15.10⁷ Bq/an a été retenue.

^{**} L'activité retenue en ⁵⁷Co dans le cadre de cette étude est de 1,58.10³ kBq intégrant les rejets du projet Fluo X, estimés de manière majorante.

Référence*: TRICASTIN-20-002591		Orano Chimie			
Version 2.0	PAGE 52/53	Installation :	Type de document*: NT	orano	
Ancien Code:		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX	
Référence RGF :		REJETS DU LEA			

	% production maximal sur la période 2012-2020	Activité α et β maximale mesurée sur la période 2012-2020 (kBq/an)	Activité rejetée (kBq/an)	Activité rejetée majorée de 50 % (kBq/an)
Emetteurs alpha				
Am241	96,9		5,62	8,43
Cm244	3,7		0,21	0,32
Np237	3,9	5.0	0,22	0,34
Pu238	1,1	5,8	0,07	0,10
Pu239	7,6		0,44	0,66
U233	0,02		0,001	0,001
Total	113,2	-	6,56	9,84
Emetteurs bêta (l	nors ⁵⁷ Co)			
Ag110m	10,4		1,27	1,91
Ba133	31,0		3,82	5,72
Ca45	0,2		0,02	0,03
Cd109	3,3		0,41	0,62*
Ce139	13,2		1,62	2,44
Cl36	0,2		0,03	0,04
Co60	8,7		1,07	1,60
Cr51	8,2		1,01	1,52
Cs134	3,6		0,44	0,67
Cs137+Ba137m	42,3		5,20	7,81
Eu152	15,9		1,96	2,94
Fe55	0,5		0,07	0,10
Fe59	8,0		0,99	1,48
Mn54	3,0	12,3	0,37	0,56
Na22	1,6		0,20	0,30
Ni63	0,2		0,03	0,04
P32	0,3		0,04	0,05
Pm147	0,1		0,02	0,02
S35	0,1		0,007	0,01
Sn113	5,3		0,65	0,97
Sr85	8,6		1,06	1,58
Sr89	0,6		0,07	0,1
Sr90	18,5		2,27	3,41
Tc99	5,4		0,67	1,00
Tl204	0,002		0,0002	0,0003
Y88	8,1		0,99	1,49
Zn65	5,1		0,63	0,94
Total	202,4	-	24,90	37,36

^{**} L'activité retenue en ¹⁰⁹Cd dans le cadre de cette étude est de 1,15.10⁴ kBq intégrant les rejets du projet Fluo X.

Tableau 41 : Détermination du terme source (2/2)

Il convient de souligner que la somme des activités des émetteurs alpha et bêta ainsi déterminées (respectivement 6,6 et 24,9 kBq/an avant majoration de 50 %) sont nettement supérieures aux activités alpha et bêta maximales mesurées sur la période 2012-2020 (respectivement 5,8 et 12,3 kBq/an, voir * hors 57Co.

Référence*: TRICASTIN-20-002591		Orano Chimie			
Version 2.0	PAGE 53/53	Installation :	Type de document*: NT	orano	
Ancien Code:		Objet / Titre*: EVALUATION	DE L'IMPACT DOSIMETE	RIQUE ASSOCIE AUX	
Référence RGF :		REJETS DU LEA			

^{**} L'activité retenue en ^{57Co} dans le cadre de cette étude est de 1,58.103 kBq intégrant les rejets du projet Fluo X, estimés de manière majorante.

Tableau 40).

La méthode utilisée afin de déterminer le terme source des rejets du LEA peut donc être considérée comme majorante.